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Motivated by recent experimental investigations of Cs-Cs-Li Efimov resonances, this work theoretically
investigates the few-body properties of N − 1 noninteracting identical heavy bosons, which interact with a
light impurity through a large s-wave scattering length. For Cs-Cs-Cs-Li, we predict the existence of

universal four-body states with energies Eðn;1Þ
4 and Eðn;2Þ

4 , which are universally linked to the energy EðnÞ
3 of

the nth Efimov trimer. For infinitely large 133Cs-6Li and vanishing 133Cs-133Cs scattering lengths, we find

ðEð1;1Þ
4 =Eð1Þ

3 Þ1=2 ≈ 1.51 and ðEð1;2Þ
4 =Eð1Þ

3 Þ1=2 ≈ 1.01. The 133Cs-6Li scattering lengths at which these states
merge with the four-atom threshold, the dependence of these energy ratios on the mass ratio between the
heavy and light atoms, and selected aspects of the generalized Efimov scenario for N > 4 are also
discussed. Possible implications of our results for ongoing cold atom experiments are presented.
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Continuous and discrete scale invariances underlie many
phenomena in physics. The possibly most aesthetically
appealing examples are fractals [1], where a given pattern
repeats itself as one zooms in. Scale invariance phenomena
also emerge in quantum mechanics. A prominent example
is the three-body Efimov effect [2,3]. If there exists an

Efimov trimer of size lðnÞ3 and with energy EðnÞ
3 [4],

then there should exist another larger and less strongly

bound Efimov trimer of size lðnþ1Þ
3 ¼ λlðnÞ3 and with energy

Eðnþ1Þ
3 ¼ λ−2EðnÞ

3 . Here, λ (λ > 1) is a scaling factor that
depends on the masses and particle statistics of the
constituents.
The experimental observation of consecutive three-body

resonances is extremely challenging as it requires working
in the universal Efimov window. To be in this window, the
absolute values of at least two of the three two-body s-wave
scattering lengths [5] have to be larger than the other length
scales of the underlying two-body potentials and the
temperature has to be lower than the energy scale set by
the s-wave scattering length. Thus, to observe two con-
secutive three-atom resonances, exquisite control over the
scattering lengths and ultralow temperatures are required.
For three identical bosons, λ is approximately equal to 22.7
and two consecutive three-atom resonances in a bosonic
system have only been observed recently in 133Cs [6,7].
It is well known that the scaling factor λ takes smaller, and

hence more favorable, values for heteronuclear mixtures
with infinitely large interspecies s-wave scattering length
[3,8–13]. For 133Cs-133Cs-6Li, e.g., λ takes the value 4.877.
For notational convenience, we use Cs and Li to refer
to the bosonic 133Cs and fermionic 6Li isotopes in what
follows. Indeed, recently the Heidelberg [14] and Chicago
[15] groups independently reported the experimental
observation of, respectively, two and three consecutive

Cs-Cs-Li three-atom resonances. The analysis shows that
the Cs-Cs interactions play a negligible role at the present
precision of the experiments, indicating that the observation
of Efimov physics in these heavy-light mixtures is due to the
large magnitude of the Cs-Li s-wave scattering length.
The extended Efimov scenario has been studied pre-

dominantly for four identical bosons with large in absolute
value two-body s-wave scattering length [16–22]. In this

case, there exist two four-body states with energies Eðn;1Þ
4

and Eðn;2Þ
4 that are universally tied to the nth Efimov trimer

with energy EðnÞ
3 . These four-body states lead to measurable

four-atom resonances on the negative scattering length side

(at scattering lengths aðn;1Þ4;− and aðn;2Þ4;− ) and atom-trimer and
dimer-dimer resonances on the positive scattering length
side [20–22].
This Letter explores the generalized Efimov scenario for

N − 1 identical heavy bosons and a single light impurity for
the case where the magnitude of the heavy-light s-wave
scattering length is large compared to all other two-body
length scales, including the heavy-heavy s-wave scattering
length. For the Cs-Cs-Cs-Li system, we find—as was
found for four identical bosons—two tetramer states at
unitarity. Moreover, we find that these four-body states
become unbound at Cs-Li s-wave scattering lengths

að1;1Þ4;− ≈ 0.55að1Þ3;− and að1;2Þ4;− ≈ 0.91að1Þ3;−. Since a
ð1;2Þ
4;− is close

to að1Þ3;−, the loss features in the Heidelberg and Chicago
experiments [14,15] that were identified as being due to
three-body physics could potentially, in the proper temper-
ature and density regime, include a “contamination” from
the four-body sector. Our calculations thus suggest that it
would be extremely interesting to search for universal four-
body physics in Cs-Li mixtures. When the mass ratio κ
between the heavy and light atoms is reduced to less than
≈13, the energy of the excited tetramer at unitarity lies
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above that of the trimer. For very large mass ratios, we
find—as in the case of the Cs-Cs-Cs-Li system—two
tetramers at unitarity.
An intriguing question is how the extended Efimov

scenario, if existent, looks for N > 4. For N identical
bosons, evidence has been presented that there exist five-
body and higher-body states that are universally tied to each
Efimov trimer [23–25]. While many questions regarding
the N > 4 extension of the Efimov scenario for identical
bosons remain [23,26–28], essentially nothing is known
about heteronuclear systems with N > 4. We find five- and
six-body states for the BN−1X system that are universally
tied to the lowest Efimov trimer.
Our model Hamiltonian H,

H ¼ −
ℏ2

2mB

XN−1

j¼1

∇2
~rj
−

ℏ2

2mX
∇2

~rN
þ V2b þ V3b; ð1Þ

is designed to capture the low-energy properties of N-body
droplets. The position vectors of the bosons of massmB are
denoted by ~rj (j ¼ 1;…; N − 1) and the position vector of
the impurity of mass mX is denoted by ~rN. The potential
V2b accounts for the pairwise interactions between the
bosons and the impurity, V2b ¼

P
N−1
j¼1 v0 exp½−r2jN=ð2r20Þ�,

where the depth v0 (v0 < 0) and the range r0 are adjusted
to reproduce the desired interspecies two-body scattering
length as and rjk is equal to j~rj − ~rkj. Motivated by our
desire to explore the extension of Efimov’s BBX trimer
study with large BX and vanishing BB s-wave scattering
lengths [3,8–13], which has been realized experimentally
[14,15], to the N > 3 sector, we neglect the interactions
between the identical heavy bosons.
The potential V3b accounts for a repulsive three-body

force for each BBX triple, V3b ¼
P

N−1
j<k V0 exp½−ðr2jk þ

r2jN þ r2kNÞ=ð2R2
0Þ� [23,29]. For diverging BX scattering

length, the height V0 and range R0 of the repulsive three-
body interaction are adjusted such that the lowest trimer
state is much larger than r0 and R0, i.e., such that the wave
function of the lowest trimer is insensitive to the details
of the model interactions and accurately described by
Efimov’s zero-range theory [30,31]. Throughout, we use
R0 ¼

ffiffiffi
8

p
r0. Having fixed the parameters of the model

Hamiltonian by analyzing the properties of the three-body
system, the four- and higher-body sectors are explored
and found to be universal; i.e., the four- and higher-
body observables are found to be largely insensitive to
the details of the underlying potential model, provided the
N-body (N > 3) observables are expressed in terms of
the corresponding three-body observables. We emphasize
that our model Hamiltonian does not allow us to predict the
three-body parameter, which is expected to be determined
by the long-range van der Waals tail of the true atom-atom
interactions [32–37]. Rather, the model Hamiltonian allows
us to predict four- and higher-body properties relative to the

three-body properties. The underlying premise is that the
four- and higher-body sectors are fully determined by the
three-body sector.
To solve the time-independent Schrödinger equation

for the Hamiltonian given in Eq. (1), we expand the
eigenstates in the relative coordinates in terms of explicitly
correlated Gaussian basis functions [31,38–40]. The result-
ing eigenenergies EN provide, according to the Hylleraas-
Undheim-MacDonald theorem, variational upper bounds to
the energies of the ground and excited states of the system
[31,38,39]. The states considered in this work have
vanishing angular momentum and positive parity. Since
our implementation provides access only to true bound
states and not to resonance states, we are limited to treating
N-body states that lie below the ground state of the (N − 1)-
body system; i.e., we have access, provided they exist, to
N-body states that are tied to the lowest Efimov trimer and
not to those that are tied to energetically higher-lying
Efimov trimers.
To validate our approach, we consider the N identical

boson system with infinitely large s-wave scattering

length [31]. We find ðEð1;1Þ
4 =Eð1Þ

3 Þ1=2 ¼ 2.127ð5Þ and

ðEð1;1Þ
5 =Eð1Þ

3 Þ1=2 ¼ 3.21ð5Þ, which agrees well with the
literature values of 2.147 [19] and 3.22(4) [23]. For the
four-body system, the discrepancy can be explained by
small finite-range corrections. Moreover, our calculations
confirm the existence of an extremely weakly bound
excited tetramer [16,17,19].
Figure 1 shows the extended Efimov plot for the CsN−1Li

system with N ¼ 3 and 4 [41]. The energies of the dimer,
trimer, and tetramer states are shown by dashed, solid,
and dotted lines, respectively. The energy ratios between
consecutive trimers at unitarity are close to those predicted
by the universal zero-range theory (see Table I). For the
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FIG. 1 (color online). Efimov plot for the BN−1X system
(N ¼ 3 and 4) with κ ¼ 133=6. The dashed line shows the
energy of the BX system. The solid lines show the three lowest
energies of the BBX system. The dotted lines show the energies
of the two bound states of the BBBX system that are tied to the
lowest Efimov trimer. The excited tetramer becomes unbound at
r0=as ≈ 0.02. The calculations are performed for V0 ¼ 3.2Esr,
where Esr is equal to ℏ2=ð2μr20Þ and μ denotes the reduced mass,
μ ¼ mBmX=ðmB þmXÞ.
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lowest two trimers, the ratio deviates from the universal
value by 0.8%, indicating that finite-range effects are
negligibly small near unitarity. Nonuniversal finite-
range corrections do, however, play a role when the trimers
merge with the three-atom and atom-dimer thresholds.
The scattering length ratios where the trimers hit the

three-atom threshold are found to be að2Þ3;−=a
ð1Þ
3;− ¼ 5.28ð8Þ

and að3Þ3;−=a
ð2Þ
3;− ¼ 4.95ð8Þ, which deviate by 8.5% and 1.7%,

respectively, from the universal zero-range theory value
of 4.865.
For negative and sufficiently large positive interspecies

scattering lengths, we find two tetramers that are
bound with respect to the lowest trimer. The energies
of these tetramers “trace” the energy of the lowest trimer.

At unitarity, we find ðEð1;1Þ
4 =Eð1Þ

3 Þ1=2 ¼ 1.510ð5Þ and

ðEð1;2Þ
4 =Eð1Þ

3 Þ1=2 ¼ 1.010ð5Þ. These values are expected to
be fairly close to what the universal zero-range theory

would yield. At as ≈ 2.6ð4Það1Þtd , where að1Þtd denotes the
scattering length where the lowest trimer energy is equal
to that of two dimers, the energy of the excited tetramer
is equal to that of the lowest trimer, indicating that the
excited tetramer becomes unbound at this scattering
length [42].
Qualitatively, the energy spectrum shown in Fig. 1

is similar to that for the N identical boson system,

which supports two universal tetramers for 1=as ≤
1=½13.75ð5ÞaðnÞtd � [19]. In that system, it has been shown
that the universal tetramers are not only attached to the
lowest Efimov trimer but to each Efimov trimer (for the
excited Efimov trimers, the “attached” four-body states
correspond to resonance states [19]). We conjecture that
this is also true for the B3X system; i.e., we conjecture
that there exist two tetramers with energies Eðn;1Þ

4 and Eðn;2Þ
4

that are universally tied to the nth Efimov trimer for 1=as
smaller than a critical inverse scattering length. On the
positive scattering length side, we restricted our four-
body calculations to fairly large as. As as decreases, the

spectrum has been predicted to contain additional four-
body states [43], which can be thought of as corre-
sponding to Efimov trimer states consisting of a dimer
and two atoms.
We find that the scattering lengths where the four-body

states merge with the four-atom threshold are given by

að1;1Þ4;− ≈ 0.55að1Þ3;− and að1;2Þ4;− ≈ 0.91að1Þ3;− for the ground and
excited tetramers, respectively. Because of finite-range
effects, these ratios are expected to differ somewhat from
those values that the universal zero-range theory would
predict. The fact that the excited tetramer is very weakly
bound with respect to the trimer implies that the scattering

length að1Þ3;− at which the trimer is in resonance with the

three-atom threshold and the scattering length að1;2Þ4;− at
which the excited tetramer is in resonance with the four-
atom threshold are quite close. Taking the value of

að1Þ3;− ¼ −337ð9Þa0 ½−320ð10Þa0� from the Chicago [15]

[Heidelberg [14]] experiment, this yields að1;1Þ4;− ≈ −187a0
½−178a0� and að1;2Þ4;− ≈ −305a0 ½−290a0�. Our results sug-
gest that the analysis of the experimental data could be
impacted by the existence of the excited tetramer discussed
in the present work. Future work should disentangle the
zero- and finite-range effects, and possibly build van der
Waals universality into the model Hamiltonian. Moreover,
finite temperature effects need to be investigated carefully.
We now discuss extensions of Fig. 1 to other mass ratios

κ and larger N. Our results for infinitely large as are
summarized in Table I. The lowest tetramer becomes less
strongly bound with respect to the lowest Efimov trimer
with increasing mass ratio and appears to approach a

constant for large κ. The ratio ðEð1;2Þ
4 =Eð1Þ

3 Þ1=2 at unitarity
increases from 1.002(1) for κ ¼ 16 to 1.067(8) for κ ¼ 50.
Our results disagree with a recent study that reported that
BBBX systems with mass ratios κ ¼ 30 and 50 support a
single tetramer state tied to each Efimov trimer [43]. The
reason for this disagreement is not clear. We find that the

TABLE I. Energies of the BN−1X system with infinitely large interspecies s-wave scattering length for various mass ratios. The second
column reports the binding momentum of the lowest trimer state in units of the binding momentum of the short-range energy scale Esr.
Columns 3–7 report ratios of binding momenta for the systems with N ¼ 3–6. For columns 3–6, the energies were extrapolated to the
V0 → ∞ limit. For columns 7–8, we used V0 ¼ 3.2Esr. The symbol “� � �” indicates that no such bound state was found. In the cases
where no entry is given, calculations were not performed. For comparison, the last column reports the scaling factor λ calculated from
Efimov’s zero-range theory.

κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1Þ
3 =Esr

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð2Þ
3 =Eð1Þ

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð3Þ
3 =Eð2Þ

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1;1Þ
4 =Eð1Þ

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1;2Þ
4 =Eð1Þ

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1;1Þ
5 =Eð1Þ

3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1;1Þ
6 =Eð1Þ

3

q
λ ¼ e−π=s0

8 0.012 12.510(5) 1.647(5) � � � 2.06(4) 12.4878
12 0.017 8.158(5) 1.58(1) � � � 1.94(4) 8.1305
16 0.021 6.313(5) 1.544(5) 1.002(1) 1.88(4) 6.2804
133=6 0.024 4.904(5) 4.867(2) 1.510(5) 1.010(5) 1.82(4) 2.03(10) 4.8651
30 0.028 3.998(3) 3.958(3) 1.488(5) 1.026(5) 1.78(4) 1.95(10) 3.9553
40 0.031 3.372(3) 3.330(2) 1.471(5) 1.046(8) 1.75(4) 3.3249
50 0.033 2.996(5) 2.952(4) 1.461(5) 1.067(8) 1.73(4) 2.9470
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excited tetramer appears at κ ≈ 13. For κ ¼ 12 and 8, we
find an excited tetramer that is bound relative to the lowest
trimer for negative scattering lengths away from unitarity
but not at unitarity. This shows that the excited tetramer
ceases to exist at different as for κ ¼ 8 to 133=6. We did
not investigate what happens to the excited tetramer for
κ ¼ 30–50 on the positive scattering length side. For
κ ¼ 50 and infinitely large interspecies scattering length,
we searched for a second excited tetramer with energy

Eð1;3Þ
4 that is bound with respect to the lowest Efimov trimer

but did not find one. The energies of the lowest N ¼ 5 and
6 states (see columns 7 and 8 of Table I) behave similar to
the energy of the lowest tetramer; i.e., the binding of the
lowest pentamer relative to the lowest tetramer and the
binding of the lowest N ¼ 6 state relative to the lowest
pentamer decrease with increasing κ. It would be interest-
ing to extend the calculations presented in this Letter to
larger N.
Figure 2 shows the pair distribution functions for the

BN−1X systems (N ¼ 3 and 4) with κ ¼ 8 (dotted line),
133=6 (solid line) and 40 (dashed line) for infinitely large
BX and vanishing BB scattering lengths. The scaled pair
distribution function 4πr2PBBðrÞ (left column of Fig. 2)
tells one the likelihood to find two identical bosons at a
distance r from each other while the scaled pair distribution
function 4πr2PBXðrÞ (right column of Fig. 2) tells one the
likelihood to find a B atom at a distance r from the X atom.
To facilitate the comparison between systems with different

mass ratios, the lengths in Fig. 2 are scaled by the binding

momentum κð1Þ3 , where ℏκð1Þ3 ¼ ð2μjEð1Þ
3 jÞ1=2 [44].

Figures 2(a) and 2(b) show r2PBBðrÞ and r2PBXðrÞ for
the lowest Efimov trimer. Two characteristics are evident.
First, r2PBX is larger at small r than r2PBB. This is not
surprising, as the B atoms do not interact and are held
together through the light impurity. Second, the B atoms
become slightly more localized with increasing mass
ratio κ; i.e., the BB pair distribution function becomes
narrower with increasing κ. Figures 2(c)–2(f) show the
scaled pair distribution functions for the BBBX system.
The scaled pair distribution functions for the lowest
tetramer [Figs. 2(c)–2(d)] behave similarly to those for
the lowest trimer. For the excited tetramer [Figs. 2(e)–2(f)],
the scaled pair distribution functions exhibit a double-peak
structure (BB distance) or “shoulder” at large distances
(BX distance), indicating that the excited tetramer can be
roughly thought of, like the excited tetramer in the four
identical boson system [24], as a trimer with a fourth atom
“tagged on” (i.e., a “3+1 state”).
In summary, this Letter presented results for the extended

Efimov scenario for heteronuclear BN−1X mixtures. It was
found that the number of universal four-body bound states
that are tied to the Efimov trimers depends on the mass ratio
and scattering length. Structural properties of the four-body
system were analyzed and extensions to the five- and
six-body sector were presented. The results presented
constitute an important contribution to the understanding
of universal low-energy phenomena across the fields of
atomic, nuclear, and particle physics. Our calculations
present the first comprehensive study of the extension of
the generalized Efimov scenario to heteronuclear mixtures
and are directly relevant to on-going cold atom experiments
on ultracold Cs-Li mixtures. Concretely, an estimate of the
four-atom resonance positions was given.
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