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The notation employed in this Supplemental Material follows that introduced in the main text.

I. LITERATURE VALUES OF b4

Table S1 summarizes the literature results for the fourth-order virial coefficient; this table is an extended version

of Table I of the main text. The non-interacting contribution to the total fourth-order virial coefficient bhom,tot
4 of the

homogeneous system is given by

bhom,ni
n = (−1)n+1/n5/2; (S1)

the interacting part of the fourth-order virial coefficient bhom4 of the homogeneous system is defined through

bhomn = bhom,tot
n − bhom,ni

n . (S2)

TABLE S1: Summary of literature results. The value reported in the respective reference is underlined. The conversion to

other “representations” is done using Eqs. (S1)-(S3). The column labeled “Ref.” refers to the bibliography of the main text.

bhom4 bhom,tot
4 b04 Ref. comment

0.096(15) 0.065(15) 0.01200(188) 19 ENS experiment

0.096(10) 0.065(10) 0.01203(125) 26 MIT experiment

-0.016(4) -0.04725(40) -0.0020(5) 22 sum-over-states approach

0.06 0.02875 0.0075 23 diagrammatic approach

-0.063(1) -0.09425(10) -0.007875(125) 24 3-body inspired conjecture
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The interacting part of the fourth-order virial coefficient b04 of the harmonically trapped system at high temperature

and bhom4 are related via (see also the main text),

bhomn = n3/2b0n. (S3)

II. PAIR PRODUCT APPROXIMATION AND ZERO-RANGE DENSITY MATRIX

Equation (9) of the main text writes the observable Qni
n1,n2

/Qn1,n2
in terms of the density matrices ρni(Ri,Ri+1; τ)

and ρ(Ri,Ri+1; τ) of the non-interacting and unitary (n1, n2)-particle systems. To evaluate the density matrix by

the PIMC approach, we use the pair product approximation [1],

ρ(R,R′; τ) ≈

n1+n2∏
j=1

ρsp(rj , r
′
j ; τ)

×
 n1∏

j=1

n1+n2∏
k=n1+1

ρ̄rel(rj − rk, r
′
j − r′k; τ)

 , (S4)

where ρsp(r, r′; τ) is the single-particle density matrix [1],

ρsp(r, r′; τ) = a−3ho [2π sinh(τ~ω)]
−3/2 ×

exp

(
− (r2 + r′2) cosh(τ~ω)− 2r · r′

2 sinh(τ~ω)a2ho

)
, (S5)

and ρ̄rel(r, r′; τ) is the reduced pair density matrix of the relative two-body problem with zero-range interaction [2],

ρ̄rel(r, r′; τ) = 1 +
2~2τ
mrr′

exp

(
−m(rr′ + r · r′)

2~2τ

)
. (S6)

The density matrix ρni of the non-interacting system is given by Eq. (S4) with ρ̄rel replaced by 1.

III. EXTRAPOLATION TO THE τ → 0 LIMIT AND SELECTED RAW DATA

As mentioned in the main text, to determine bn with comparable percentage accuracy at all temperatures,

Qni
n1,n2

/Qn1,n2
has to be determined with increasing percentage accuracy with increasing temperature. To ensure

that our results are free of systematic errors, the error introduced by the τ → 0 extrapolation has to be smaller than

the error of the extrapolation that arises from the statistical error of the individual PIMC data points. To illustrate

this, we consider the (2,1) system at the highest temperature considered, i.e., at kBT = 2Eho.

Circles in Fig. S1(a) show Qni
2,1/Q2,1, obtained by our PIMC approach, as a function of the imaginary time step τ

(the data correspond to N = 2, 3, 4, and 6). The solid line shows a fourth-order fit of the form a + bτ2 + cτ4 to our
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FIG. S1: (Color online) Benchmarking our PIMC results (circles) for the (2,1) system at unitarity through comparison with

sum-over-states results. The observable Qni
2,1/Q2,1 as a function of the imaginary time step τ at temperature kBT = 2Eho. The

error bars (not shown) are smaller than the symbol size. In (a), the time steps correspond to N = 2, 3, 4, and 6. In (b), the

time steps correspond to N = 3, 4, 6, and 8. The solid line shows the fourth-order polynomial fit of the form a + bτ2 + cτ4.

The dashed line shows the sum-over-states results.

PIMC data. The extrapolated τ → 0 value of 0.888949(8), where the error bar accounts for the statistical uncertainty

of the PIMC data, deviates by about 3 standard deviations (or 0.003%) from the sum-over-states result of 0.8889755.

We attribute the discrepancy to the fact that the τ considered are not small enough for the fourth-order fit to be

fully reliable. To corroborate this interpretation, we (i) employ a sixth-order fit and (ii) apply the fourth-order fit to

PIMC data for smaller τ . The sixth-order fit (using, as before, the data corresponding to N = 2, 3, 4, and 6) yields

0.888964(19), in agreement with the sum-over-states result. Note, however, that the error bar is much larger than

that resulting from the fourth-order fit; the reason is that we are attempting to determine four fit parameters using

just four data points. Performing a fourth-order fit to the PIMC data for N = 3, 4, 6, and 8 yields 0.888966(8), which

almost agrees with the sum-over-states approach within error bar and with an error bar that is comparable to our

previous fourth-order fit [see Fig. S1(b)]. This analysis suggests that our PIMC calculations are free of systematic

errors provided we go to sufficiently small τ .

Table S2 lists the PIMC raw data for the (3,1) and (2,2) systems at various temperatures (the data for low

temperatures are not shown). We report the observables Qni
3,1/Q3,1 and Qni

2,2/Q2,2 for various time slices. For

Eho/(kBT ) = 0.6, 0.7, and 0.8, the largest number of time slices considered is Nmax = 9. For Eho/(kBT ) = 0.5, our
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TABLE S2: Selected PIMC raw data. Columns 1 and 2 show the inverse temperature Eho/(kBT ) and the number of imaginary

time slices N , respectively. Columns 3 and 4 show the observables Qni
3,1/Q3,1 and Qni

2,2/Q2,2 for the (3,1) and (2,2) systems,

respectively.

Eho/(kBT ) N Qni
3,1/Q3,1 Qni

2,2/Q2,2

0.5 2 0.8413081(35) 0.7940517(46)

0.5 3 0.8418155(43) 0.7946990(43)

0.5 4 0.8420157(41) 0.7949482(45)

0.5 6 0.8421806(41) 0.7951732(53)

0.6 3 0.754475(16) 0.686274(11)

0.6 4 0.754955(12) 0.686860(11)

0.6 5 0.755218(12) 0.687174(14)

0.6 7 0.755450(13) 0.687445(14)

0.6 9 0.755591(15) 0.687587(14)

0.7 3 0.658547(24) 0.571429(24)

0.7 4 0.659464(22) 0.572473(14)

0.7 6 0.660203(26) 0.573329(22)

0.7 9 0.660583(29) 0.573764(23)

0.8 4 0.563935(34) 0.462752(36)

0.8 5 0.564662(35) 0.463530(33)

0.8 7 0.565379(36) 0.464433(32)

0.8 9 0.565708(38) 0.464757(33)

available computing resources limit us to Nmax = 6, resulting in reduced accuracy of the observables.

For Eho/(kBT ) = 0.6, 0.7, and 0.8, we perform fourth-order fits to the τ -dependent Qni
3,1/Q3,1 and Qni

2,2/Q2,2 data

listed in Table S2, yielding extrapolated τ → 0 values with error bars between 0.0024% and 0.016%. We estimate,

based on our tests for the three-body system, that these statistical errors are larger than the systematic error, which

arises from the use of the fourth-order fit. Hence the systematic uncertainty can be neglected. For Eho/(kBT ) = 0.5,

a fourth-order fit to the data given in Table S2 yields error bars of 0.0008% and 0.001% for Qni
3,1/Q3,1 and Qni

2,2/Q2,2,

respectively. Since we estimate the systematic fit uncertainty to be, based on our analysis for the (2,1) system, about

0.003%, we deem the fourth-order fit unreliable. Using a sixth-order fit (which yields a larger error bar), we find the
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TABLE S3: Selected extrapolated PIMC results. Columns 1 and 2 show the inverse temperature Eho/(kBT ) and the order

used in the extrapolation, respectively. Columns 3 and 5 show the extrapolated τ → 0 observables Qni
3,1/Q3,1 and Qni

2,2/Q2,2

for the (3,1) and (2,2) systems, respectively. Columns 4 and 6 show the resulting subcluster contributions b3,1 and b2,2/2,

respectively, to the fourth-order virial coefficient.

Eho/(kBT ) order Qni
3,1/Q3,1 b3,1 Qni

2,2/Q2,2 b2,2/2

0.5 6 0.842330(15) 0.0194(16) 0.795393(18) −0.0139(16)

0.6 4 0.755751(18) 0.0153(4) 0.687775(18) −0.0102(4)

0.7 4 0.660877(39) 0.0135(3) 0.574108(30) −0.0095(2)

0.8 4 0.566227(82) 0.0111(2) 0.465415(73) −0.0093(2)

values listed in Table S3.
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