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The notation employed in this Supplemental Material
follows that introduced in the main text. Section I used
the non-abelian Wilson line technique to clarify why the
crossing is avoided in Fig. 2 of the main text. Section
II clarifies the parameters used in the simulation in Fig.
4 of the main text. Section III provides an alternative
simulation: expansion of the ground state in a 1D har-
monic trap. Section IV provides a full 3D simulation of a
proposed experiment to demonstrate the localization of
the ground state due to gluing of two cylinders. Section
V clarifies Fig. 2(a-b) in the main text.

I. BLOCH OSCILLATIONS IN THE PRESENCE
OF BAND CROSSINGS

In the presence of a constant force, F , the quasi-
momentum becomes kf = k0 + Ft at time t, where k0
is the initial quasi-momentum at t = 0. In the adiabatic
limit, the inter-band transition can be determined by the
path-ordered integral [1, 2],

W (kf ; k0) = P̂ exp[i

∫ kf

k0

Â(k)dk/~], (S1)

where P̂ is the path-ordering operator and the matrix
representation of the non-Abelian Berry connection Â(k)
is defined as As′,s(k) = 〈~us′k|i∂k|~usk〉, where |~usk〉 is the
periodic Bloch wavefunction in the sth band,

|~usk〉 = eisqLx
M∑
j=1

∑
l

c̃jl,s(k)eilQx|j〉. (S2)

We obtain

As′,s(k) =

M∑
j

∑
l,l′

(
c̃j∗l′,s′(k)∂k c̃

j
l,s(k)

)∫ 2π/qL

0

ei[(s−s
′)qL+(l−l′)Q]xdx ∼ δ((s− s′)qL + (l − l′)Q). (S3)

As |s−s′|qL ≤ (n−1)qL and |l− l′|Q ≥ nqL (if l 6= l′), to
ensure that (s− s′)qL + (l− l′)Q = 0 is valid, s = s′ and
l = l′ must be satisfied. Thus, As,s′(k) ∼ δ(s− s′); Here,
n = Q/qL is defined in the main text. This means that
during the time evolution, there is no transition between
bands with different s (different colored bands in Fig. 2
of the main text).

II. INTERACTION EFFECTS ON THE
EXPANSION OF A GAUSSIAN WAVE PACKET

IN THE REAL SPACE

As discussed in the main text, we consider a Gaussian
wave packet as the initial state. All the spin compo-
nents have equal amplitude and phase. The width of the
wave packet, σ0 =

√
< x2 > − < x >2, is 455/q. We use

γ8 = 13/21 to approximate γ. The density spread σ0 is
roughly 3.5 times the underlying period of the Hamilto-

nian. Figure S1 shows the ratio of the width in a later
time t to σ0, where t = 1000~/Er, as a function of the
initial interaction energy Ei =

∫
gρ2idx for Ω′ = 0 and

Ω′ = 2Er. In both cases, weak attractive (repulsive) in-
teractions decrease (increase) the width, σ(t). When in-
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FIG. S1. Density spread as a function of initial interaction
energy Ei for Ω′ = 0 (a) and Ω′ = 2Er(b).
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teractions are strong enough, the width always increase
with increasing the strengths of interactions due to the
mixing with extended states at high energies.

III. EXPANSION DYNAMICS OF THE
GROUND STATE IN A HARMONIC TRAP

We consider weakly interacting bosons in a harmonic
trap with the trapping frequency ω = 0.034Er/~, and
use the imaginary time propagation to find the ground
state. For non-interacting systems, the ground state has
a Gaussian profile. In the presence of a weak repulsive
interaction, the density is featured with a Thomas-Fermi
profile.

Then we turn off the trap and the interactions, and
let the cloud expand. Fig. S2 shows the width of the
wavepacket as a function of time. When Ω′ = 0, the
ground state in the trap is an extended one. Therefore,
the wavepacket expands quickly after the trap and in-
teractions are turned off. In contrast, when Ω′ = 2Er,
the ground state is a localized one. Even after turning
off the trap and interaction, the width of the wavepacket
has little changes, well reflecting the localized nature of
the ground state in the trap. As a further comparison,
we turn on a weak interaction in the expansion dynamics
once the trap is turned off. It is clear that a weak re-
pulsive interaction speeds up the expansion and a weak
attractive interaction slows it down.

All these results are similar to those presented in the
main text. It means that a shallow trap used in typi-
cal cold atom experiments do not change our qualitative
results and main conclusions. In a shallow trap, though
the momentum is no longer a good quantum number and
an extended state does not extend to infinity, it can still
spread over the whole trap. In contrast, localized states
still remain localized, provided that the trapping poten-
tial is much smaller than the energy gap between the
localized states and delocalized ones.

IV. A REALISTIC SETUP IN EXPERIMENTS

Our scheme can be realized in laboratories as a
simple generalization of some current experiments [3].
We choose four hyperfine states of 87Rb, |F,mF 〉 =
|2, 2〉 , |2, 1〉 , |1, 0〉 , |1, 1〉. States |2, 2〉 and |2, 1〉 are res-
onantly coupled by one pair of counter propagating Ra-
man beams with recoil momentum kr = 2π/λ, where
λ = 790nm is the wavelength. The momentum trans-
ferred is 2kr. States |1, 0〉 and |1, 1〉 are resonantly cou-
pled by another pair of Raman beams with the same
wavelength that is tilted with a small angle θ with re-
spect to the first pair of Raman beams. The momentum
transferred is 2kr cos θ, where the angle θ is chosen such
that cos θ is irrational or rational, say, cos θ = γi, where
γi is defined in the main text. One microwave couples
states |2, 2〉 and |1, 1〉, and another couples states |2, 1〉
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FIG. S2. The evolution of the wavepacket after releasing
from the trap. The solid orange (black dashed) curve repre-
sents results for Ω′ = 2Er (Ω′ = 0) when the interaction is
also turned off in the expansion. Squares and circles repre-
sent results for a small repulsion and a small attractive in-
teraction added in the expansion, respectively. The absolute
interaction strength, |g|, is the same, and the interaction en-
ergies Ei =

∫
gρ2idx differ because of different densities. For

Ω′ = 2Er, Ei/Er ≈ 0.010 and −0.039 for positive and nega-
tive g, respectively. For Ω′ = 0, Ei/Er ≈ 0.0098 and −0.013
for positive and negative g, respectively.
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FIG. S3. (a) A Bose Einstein Condensate is confined in a
harmonic trap. Straight arrows represent Raman lasers and
wiggles indicate microwaves. (b) A scheme to couple hyper-
fine states of 87Rb. Four states are cyclically coupled by pairs
of Raman lasers (arrows) and microwaves (wiggles). In ad-
dition, a microwave couples states |1, 1〉 and |2, 1〉 with cou-
pling strength Ω′. (c) A schematic of the cross sections of two
cylinders or tori when they are glued together. The coupling
strengths and momenta transferred are labeled.

and |1, 0〉. This completes a cyclic coupling between four
states and delivers a synthetic cylinder. Replacing Ra-
man beams by LG beams, this creates a synthetic torus.
All coupling strengths are scaled with 2Er = ~2(2kr)

2/m,
where m is the mass of a Rubidium atom. As discussed
in the main text, eigenstates are extended, even when
cos θ is irrational and the Hamiltonian is quasi-periodic.

To glue two cylinders or tori, an extra microwave cou-
pling between states |2, 1〉 and |1, 1〉 could be added. The
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coupling strength is Ω′. The experimental setup is de-
picted in Fig. S3.

Using realistic experimental parameters, we perform
time-dependent simulations using the Gross-Pitaevskii
equation. We consider 15000 87Rb atoms in a three-
dimensional harmonic trap with an angular trapping fre-
quency 2π × 500Hz. We compute the ground states in
the presence of Raman and microwave couplings, inter-
actions and the harmonic trap. After the initial state
is prepared, we turn off the trap along x̂, the direction
of momentum transfer. The transverse confinement re-
mains. All the inter- and intra-species scattering lengths
are well approximated by 93a0, where a0 is the Bohr ra-
dius. The angle is chosen such that cos θ = 13/21.

Fig. S4 shows the width of the wavepacket, σ, as a
function of time t after the trap and the interaction are
turned off. The wavepacket expands fast when Ω′ = 0, as
a consequence of the extended ground state in the trap.
It expands little when Ω′ = 2Er, reflecting the localized
nature of the initial state in the trap after glueing two
cylinders.
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FIG. S4. Expansion dynamics when the ground state is
released from the trap along the x direction. Solid line and
dashed lines represent results of Ω′ = 2Er and Ω′ = 0, respec-
tively.

V. COMPARISONS BETWEEN THE
UNIFORM AND NONUNIFORM FLUX

The ground states of the systems for Fig. 2(a) and
Fig. 2(b) in the main text are depicted in Fig. S5(a).

The density modulation of each spin component is de-
termined by the total momentum Q, or equivalently,
the total flux penetrating a unit length. The period of
the density oscillation d̃ = 2π/Q. However, the rela-
tive phases between different spin components depend
on how the flux is distributed on the surface. For the
system in Fig. 2(a), n = 3, qL = q = Q/3, and the flux
is uniformly distributed. The relative phase has a pe-
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FIG. S5. Curves represent the density profiles of each in-
dividual spin component near the maxima. The phases of
the wavefunctions are also shown. Red arrows represent the
spatially dependent coupling along the synthetic direction.
Maxima of the density form plaquettes, in which the flux per
plaquette are shown.

riod of d = 2π/q = 3d̃. The lattice spacing is therefore
d = 6π/Q. In contrast, for the system in Fig. 2(b), n = 4,
qL = 3q/4, and the distribution of the flux is nonuniform.
The relative phase has a period of 8π/Q, and the lattice
spacing is therefore 8π/Q.
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