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Harmonically trapped Fermi gas: Temperature dependence of the Tan contact
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Ultracold atomic gases with short-range interactions are characterized by a number of universal species-
independent relations. Many of these relations involve the two-body Tan contact. Employing the canonical
ensemble, we determine the Tan contact for small harmonically trapped two-component Fermi gases at unitarity
over a wide range of temperatures, including the zero and high-temperature regimes. A cluster expansion that
describes the properties of the N -particle system in terms of those of smaller subsystems is introduced and shown
to provide an accurate description of the contact in the high-temperature regime. Finite-range corrections are
quantified and the role of the Fermi statistics is elucidated by comparing results for Fermi, Bose, and Boltzmann
statistics.
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Systems with short-range interactions are characterized by
universal relations that are independent of the details of the
underlying interactions. The Tan contact [1–5], e.g., enters into
a large number of universal relations and connects physically
distinct quantities such as the large momentum tail, the
inelastic loss rate, the number of pairs with small interparticle
distances, and certain characteristics of radio frequency (rf)
spectra. A striking feature of many of the universal relations is
that they apply to homogeneous and inhomogeneous systems
at zero and finite temperature. Yet, although many universal
relations that evolve around the Tan contact are known, only a
few explicit measurements [6–10] and calculations [11–21] of
the Tan contact exist. For example, the dependence of the Tan
contact of the spin-balanced homogeneous two-component
Fermi gas at unitarity on the temperature is highly debated.
While some studies predict a monotonic decrease of the contact
with increasing temperature, others predict a nonmonotonic
dependence.

Recently, small trapped atomic Fermi gases have been pre-
pared experimentally [22,23], motivating theoretical studies of
few-fermion systems as a function of the temperature. While
the contact of large harmonically trapped spin-balanced two-
component Fermi gases is predicted to decrease monotonically
with increasing temperature, the behavior of few-atom systems
is largely unexplored. As we will show in this work, such
studies provide a detailed qualitative understanding of the
temperature dependence of the contact, while at the time
establishing accurate benchmarks.

This paper considers small Fermi gases consisting of N1

spin-up and N2 spin-down fermions under external spherically
symmetric harmonic confinement. Working in the canonical
ensemble, we determine the Tan contact at unitarity with
an accuracy at the few percent level as a function of the
temperature, including the low-temperature (near zero) regime
and the high-temperature regime. Our main findings are: (i)
We devise a cluster expansion in the canonical ensemble
that describes the high-temperature tail of the Tan contact
accurately. This expansion assumes a fixed number of particles
and is thus, unlike the virial expansion [24–27], applicable to
small and large systems. The cluster expansion can be applied
to any thermodynamic observable calculated in the canonical

ensemble. (ii) While the contact of the trapped (N1,N2) =
(1,1) and (2,2) systems is maximal at T = 0, that of the
(2,1), (3,1), and (4,1) systems shows a maximum at finite
temperature. A microscopic interpretation of this behavior
is offered. (iii) For the cases studied, the contact shows a
non-negligible dependence on the range r0 of the underlying
two-body potential at low temperature; in the high-temperature
regime, in contrast, the range dependence is negligible.
(iv) Fermi statistics plays a role at temperatures where three-
body physics is non-negligible. The role of the Fermi statistics
is elucidated by turning the exchange symmetry off and by
switching to Bose statistics.

The two-component Fermi gas consisting of N atoms with
mass m and position vectors rj (j = 1, . . . ,N) is described by
the model Hamiltonian H ,

H =
N∑

j=1

(−h̄2

2m
∇2

j + 1

2
mω2r2

j

)
+

N1∑
j=1

N∑
k=N1+1

Vtb(rjk), (1)

where ω denotes the angular trapping frequency. We consider
two different interspecies two-body potentials Vtb, a regular-
ized zero-range pseudopotential VF [28] and a short-range
Gaussian potential VG with depth U0 (U0 < 0) and range
r0, VG(rjk) = U0 exp[−r2

jk/(2r2
0 )]. For a given r0, we adjust

U0 such that VG supports a single zero-energy s-wave bound
state in free space, i.e., such that the s-wave scattering length
as diverges. Our calculations use r0 � aho, where aho is
the harmonic oscillator length, aho = √

h̄/(mω). This paper
considers temperatures ranging from T = 0 to kBT � Eho,
where Eho = h̄ω. The largest temperatures considered are
chosen such that the two-body interactions can be reliably
parametrized by the s-wave scattering length and correspond-
ing effective range correction, i.e., so that higher partial wave
contributions in the two-body sector can be neglected.

To determine the Tan contact CN1,N2 , we employ the
adiabatic and pair relations,

CN1,N2 = 4πm

h̄2

〈
∂E(as)

∂
(−a−1

s

)
〉

th

(2)
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and

CN1,N2 = 4π lim
s→0

〈
Nr<s

pair

〉
th

s
; (3)

here, the 〈·〉th notation indicates a thermal average and E(as)
denotes the energy of the system. The quantity Nr<s

pair is the
number of pairs with interspecies distances smaller than s.
For zero-range interactions, s is taken to zero. For finite-range
interactions, in contrast, s goes to a small value such that
s is larger than the range r0 of the underlying two-body
potential. The pair relation can be written in terms of the short
distance behavior of the pair distribution function P12(r) for
the spin-up–spin-down pairs [1–3,11]. Throughout, we employ
the normalization 4π

∫ ∞
0 P12(r)r2dr = N1N2. The thermally

averaged expectation values are obtained by employing two
complementary approaches, a microscopic approach and a
direct approach.

In the microscopic approach, the thermal expectation
value of an observable A is obtained using 〈A〉th =∑

j exp[−Ej/(kBT )]Aj/
∑

j exp[−Ej/(kBT )], where the
sum runs over all eigenenergies Ej (with associated eigenstates
ψj ) of the Hamiltonian H and Aj = 〈ψj |A|ψj 〉/〈ψj |ψj 〉.
The solutions to the time-independent Schrödinger equation
are obtained semianalytically for the interaction model VF

[29,30] and using a basis set expansion approach for the
interaction model VG [31–33]. The basis set expansion ap-
proach is summarized in Appendix A. The direct approach is
based on calculating 〈A〉 from the density matrix ρ, 〈A〉 =
Tr(Aρ)/Tr(ρ). To sample ρ, we employ the path integral
Monte Carlo (PIMC) approach [34]. Because of the Fermi sign
problem [35], the applicability of this approach is expected to
be limited to the high temperature regime. The PIMC approach
is summarized in Appendix B.

Figure 1(a) shows the scaled pair distribution func-
tion r2P12(r) for the (3,1) system for four temperatures,
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FIG. 1. (Color online) (a) The dotted, dashed, dash-dotted, and
dash-dot-dotted lines show the scaled pair distribution function
r2P12(r) for kBT /(h̄ω) = 0,0.6,1.2 and 2, respectively, for the (3,1)
system interacting through VG with r0 = 0.06aho. The T = 0 curve
is determined using the basis set expansion approach while the finite
T curves are determined using the PIMC approach. The thick solid
lines in the inset of (a), which is a blowup of the small r region, show
the extrapolation to r = 0. (b) The solid and dotted lines show the
relative energy of the ground state with L� = 1− and first excited
state with L� = 0+ of the (2,1) system interacting through VG with
r0 = 0.06aho as a function of −1/as .

kBT /Eho = 0, 0.6, 1.2 and 2. At T = 0 [dotted line in
Fig. 1(a)], P12 is governed by the lowest eigenstate, which has
L� = 1+ symmetry [33] (L and � denote the orbital angular
momentum and parity, respectively). As the temperature
increases, excited states contribute. The second lowest state
has 1− symmetry. Compared to the ground state, its P12 has an
increased amplitude in the small but finite r region. The scaled
pair distribution function r2P12 for kBT = 0.6Eho (dashed
line) has a comparable amplitude to that for T = 0; however,
clear differences are visible at larger interspecies distances r .
For yet larger T , the small r amplitude decreases drastically
[see dash-dotted and dash-dot-dotted lines in Fig. 1(a)] while
the maximum of r2P12 moves to larger r . To extract the contact
from r2P12, we fit the small r region (r larger than r0) and
extrapolate the fit to r = 0 [see thick solid lines in the inset of
Fig. 1(a)].

Figure 2 shows the contact CN1,N2 at unitarity for N = 2 − 4
as a function of the temperature. The symbols show the PIMC
results, obtained by analyzing the scaled pair distribution
functions r2P12(r) for VG with r0 � aho. The solid lines in
Fig. 2 show the contact for r0 = 0.06aho obtained by evaluating
the adiabatic relation via the microscopic approach. It can be
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FIG. 2. (Color online) Contact CN1,N2 as a function of kBT /Eho

for the (a) (1,1), (b) (2,1), (c) (3,1), and (d) (2,2) systems. The circles,
squares, and triangles show CN1,N2 for VG with r0/aho = 0.06, 0.08
and 0.1 obtained using the PIMC approach. The solid lines show
CN1,N2 for VG with r0 = 0.06aho obtained using the basis set expansion
approach. For comparison, the dotted lines in (a) and (b) show CN1,N2

obtained using VF. (a) The dashed line shows the first-order Taylor
expansion at high temperature. (b) The dashed line shows the cluster
expansion, i.e., the quantity 2C1,1. (c)/(d) The dashed and dash-dotted
lines show the leading order term of the cluster expansion and the
full cluster expansion, respectively. The insets of (a) and (b) show
blowups of the low-temperature regions.
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seen that the contact calculated by evaluating the adiabatic
relation via the microscopic approach and the pair relation via
the direct approach agree or connect smoothly for the three
system sizes considered.

To estimate the dependence of the contact on the range r0 of
the underlying two-body potential, we determine the contact
of the (1,1) and (2,1) systems with zero-range interactions (see
Appendixes C and D). The dotted lines in Figs. 2(a) and 2(b)
show the result. In the low-temperature regime, the contact
for r0 = 0 lies below that for r0 > 0 for the (1,1) and (2,1)
systems. At kBT = 0.4Eho, e.g., the (1,1) and (2,1) contacts
for r0 = 0.06aho lie 1.5% and 3%, respectively, above the
contact for r0 = 0. At large T , the dependence of the contact on
the range is negligibly small. Our PIMC simulations suggest
a similar range dependence for the (3,1), (4,1), and (2,2)
systems.

Figures 2(a)–2(d) show an intriguing dependence of the
contact on the temperature. C1,1 and C2,2 decrease mono-
tonically with increasing temperature while C2,1 and C3,1

exhibit a maximum at kBT ≈ 0.36Eho and between 0.4Eho and
0.5Eho, respectively. To explain this behavior, it is instructive
to evaluate the adiabatic relation via the microscopic approach.

For the (1,1) system with zero-range interactions, one finds

∂Ej

∂
(−a−1

s

) = �(j + 1/2)23/2

π (2j )!
Ehoaho (4)

for the s-wave states and ∂Ej/[∂(−a−1
s )] = 0 for all higher

partial wave states [29,36]. The fact that C1,1 decreases
monotonically with decreasing temperature is thus a direct
consequence of the fact that ∂Ej/[∂(−a−1

s )] (for s-wave
states) decreases with increasing j . The inclusion of effective
range corrections does not, if applied to the Gaussian model
interaction with sufficiently small r0, change this picture (see
Appendix C). A similar analysis, based on the numerically
determined energies, holds for the (2,2) system. Figure 1(b)
shows the lowest two relative eigenenergies, which correspond
to states with L� = 1− and 0+ symmetry, respectively, of the
(2,1) system as a function of −aho/as for r0 = 0.06aho. The
slope of the 1− state is smaller than that of the 0+ state. This
can be understood as follows. In the as → 0− limit, the lowest
state has L� = 1− symmetry. In the as → 0+ limit, in contrast,
the lowest state has L� = 0+ symmetry. The two states cross
at aho/as ≈ 1 [37–39]. Correspondingly, in the unitary regime
the energy of the lowest L = 0 state changes more rapidly
with −1/as than that of the lowest L = 1 state, implying that
the contact at unitarity increases in the low-temperature regime
where the inclusion of only two states yields converged results.
A more comprehensive analysis that accounts for all states
is presented in Appendix D. For the (3,1) system, a similar
argument can be made in the low-temperature regime where
the inclusion of just a few states suffices. The calculations
presented here suggest that CN1,N2 decreases monotonically
with T if N1 − N2 = 0 and exhibits a maximum at finite T if
N1 − N2 �= 0. While it is tempting to generalize these results
to larger systems, it should be noted that the density of states
increases dramatically with increasing N and that application
of a few-state model will be limited to smaller temperatures as
N increases.

We now introduce a high-temperature cluster expansion of
the contact at unitarity. A formal discussion of the cluster
expansion in the canonical ensemble applied to classical
systems is provided in Ref. [40]. The (N1,N2) system contains
N1N2 interacting pairs and one might expect that, using the
argument that two-component Fermi gases behave universally
[41,42], the high-temperature tail of CN1,N2 is governed by
N1N2C1,1 for kBT � Eho [see dashed lines in Figs. 2(b)–2(d)].
The next term in the cluster expansion, applicable to systems
with N > 3, depends on the three-body term C2,1 − 2C1,1,

CN1,N2

N1N2
= C1,1 + N1 + N2 − 2

2
(C2,1 − 2C1,1) + · · · . (5)

The dashed and dash-dotted lines in Figs. 2(c) and 2(d)
show the leading term and the sum of the leading and
subleading terms for the (3,1) and (2,2) systems. The inclusion
of the three-body term improves the validity regime of the
cluster expansion notably. Assuming zero-range interactions,
the leading-order terms of the Taylor expansions of C1,1

and C2,1 − 2C1,1 around ω̃ � 1, where ω̃ = Eho/(kBT ), are
4π1/2ω̃5/2a−1

ho and −7.012(12)ω̃11/2a−1
ho , indicating that the

three-body term is suppressed by ω̃3 compared to the leading-
order two-body term. Figures 2(c) and 2(d) show that the
numerically obtained C3,1 and C2,2 contacts (symbols) lie
above the cluster prediction (dash-dotted line), suggesting
that the corresponding leading-order four-body expansion
coefficients are positive. The above expansions can be viewed
as canonical analogs of the virial equation of state description
of the contact within the grand-canonical ensemble [21,26]
(see Appendix E for details).

Equation (5) shows that the contact CN−1,1 with N > 2 is
N − 1 times larger than C1,1 in the high-temperature limit. In
the low-temperature limit (see Fig. 3), in contrast, CN−1,1 with
N > 2 is only slightly larger than C1,1, reflecting the fact that,
to leading order, the system can form one and not N − 1 bound
pairs. It is also interesting to compare the limiting behaviors
of C3,1 and C2,2. C2,2 is 4/3 times larger than C3,1 at large T

[see Eq. (5)] but roughly two times larger at low T . The latter
reflects the fact that the (2,2) and (3,1) systems can form two
dimers and one dimer, respectively.
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FIG. 3. (Color online) Circles, squares, crosses, and triangles
show CN1,N2 for the (1,1), (2,1), (3,1), and (4,1) systems, respectively,
interacting through VG with r0 = 0.06aho as a function of T [43].
Dotted lines serve as a guide to the eye. Inset: Crosses, squares, and
circles show the contact of the (3,1) system for Fermi, Boltzmann,
and Bose statistics, respectively.
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To elucidate the role of the Fermi statistics, we focus on
the (3,1) system at unitarity with r0 = 0.06aho. The inset of
Fig. 3 shows the contact obtained by treating the majority
particles as identical fermions (crosses; these are the same
data as discussed above), as identical bosons (circles) and as
distinguishable Boltzmann particles (squares). In the high-
temperature regime, the Fermi and Bose statistics can be
treated as a correction to the Boltzmann statistics. In the
low-temperature regime, in contrast, appreciable differences
are revealed. The (3,1) systems with Bose and Boltzmann
statistics share the same ground state and thus the same contact
in the zero-temperature limit. Compared to the contact of the
Bose and Boltzmann systems, that of the Fermi system is
strongly suppressed as a consequence of the Pauli exclusion
principle. Specifically, the (3,1) Fermi system at unitarity does
not support a bound state in free space while the (3,1) Bose
and Boltzmann systems do. The existence of self-bound states
leads to an increased amplitude of the pair distribution function
at small interspecies distances. Moreover, the Bose and
Boltzmann systems are—unlike the Fermi system—not fully
universal, i.e., their properties are, in addition to the s-wave
scattering length, governed by a three-body parameter. This
implies that the Bose and Boltzmann systems are characterized
by a nonzero three-body contact in addition to the two-body
contact considered throughout this paper [44,45].

Finite-temperature effects play an important role in many
finite-sized systems, including atomic clusters, nuclei, and
quantum dots. Our work demonstrates that small harmonically
trapped two-component Fermi gases with infinitely strong
interspecies s-wave interactions, which can be realized and
probed experimentally, also exhibit intriguing dependencies on
the temperature. In particular, we proposed a high-temperature
cluster expansion in the canonical ensemble, quantified the
range dependence of the contact, observed and interpreted the
distinctly different behavior of the contact of spin-balanced
and spin-imbalanced Fermi gases in the low-temperature
regime, and elucidated the role of the Fermi statistics. The
ability to change the particle statistics is unique to the PIMC
technique and has contributed notably to the understanding of
microscopic superfluidity and condensation of bosonic helium
droplets [46,47]. Future studies aim at determining the critical
temperature, and the superfluid fraction and superfluid density
of small trapped Fermi gases.
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work used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by NSF Grant No.
OCI-1053575, and the WSU HPC. This work was additionally
supported by the NSF through a grant for the Institute for
Theoretical Atomic, Molecular and Optical Physics at Harvard
University and Smithsonian Astrophysical Observatory.

APPENDIX A: BASIS SET EXPANSION APPROACH

The explicitly correlated Gaussian basis set expansion
approach with semistochastic parameter optimization has been
used extensively in the literature to describe the behavior of
small harmonically trapped two-component Fermi gases with
short-range interactions (see, e.g., Ref. [33] for details). The

energies of the three- and four-body systems can be calculated
with an accuracy of better than 1% (and often better than
0.1%). To determine the solid lines in Figs. 2(b)–2(d), we
used energy cutoffs Erel around 11Eho, 9Eho, and 9.5Eho,
respectively. Including the degeneracies arising from the
projection quantum number as well as the relative energies
of states that are only very weakly affected by the short-range
interactions, this amounts to around 1250, 230, and 700 energy
levels for the (2,1), (3,1), and (2,2) systems, respectively. The
use of a finite-energy cutoff implies that the determination
of the finite-range contact within the microscopic approach
is limited to the low-temperature regime. Convergence of
the contact with respect to the energy cutoff was tested by
including successively fewer energy levels.

APPENDIX B: PATH INTEGRAL
MONTE CARLO APPROACH

Our PIMC implementation largely follows that described
in Refs. [34,48]. In the low-temperature regime, we find that
we have to adjust the simulation parameters that control the
sampling of the unpermuted configurations as well as those that
control the sampling of the permutations carefully. We employ
the second- and fourth-order Trotter formula [49,50]; higher-
order propagation schemes did not seem to lead to further
improvements.

It is well known that the standard PIMC algorithm, as
employed here, suffers from the Fermi sign problem [35].
Simply put, the signal to noise ratio decreases exponen-
tially with decreasing temperature and increasing number
of particles. As demonstrated by our simulation results, the
Fermi sign problem is sufficiently small for the parameter
region considered in this paper. In particular, the PIMC
algorithm allows us to investigate a region of the physical
parameter space (strong short-range interactions and relatively
low temperature) that is inaccessible by other numerical
approaches.

APPENDIX C: (1,1) SYSTEM WITH
ZERO-RANGE INTERACTIONS

The relative energies of the (1,1) system with s-wave
zero-range interactions can be determined by solving the
transcendental equation [29]

√
2�[3/4 − Erel/(2Eho)]

�[1/4 − Erel/(2Eho)]
= aho

as

. (C1)

At unitarity, the relative s-wave energies read Erel
j = (2j +

1/2)Eho, where j = 0,1, . . .. States with relative orbital
angular momentum L greater than zero are not affected by
the interactions. Using these energies and the expressions for
the change of the relative energies with −1/as , Eq. (4), one
finds

C1,1(ω̃) = 8
√

π
eω̃(eω̃ − 1)2

√
e−ω̃ sinh(ω̃)

eω̃[eω̃(eω̃ − 2) + 4] − 1
a−1

ho (C2)

[see dotted line in Fig. 2(a)].
To quantify the corrections that arise from the finite range

of the interspecies interaction potential, we consider three
approaches:
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(i) Using a B-spline approach, we calculate the relative
energies of the (1,1) system as a function of −1/as up to
500Eho for the first 50 angular momentum channels. Using
these energies and the corresponding slopes, we calculate the
contact numerically. The solid line in Fig. 2(a) shows the result
for the Gaussian potential with r0 = 0.06aho.

(ii) We replace −1/as in Eq. (C1) by −1/as + reffk
2/2,

where reff denotes the effective range and k is related to the
relative energy via h̄2k2/m = Erel. The leading-order effective
range corrections to the energy and to the change of the energy
at unitarity can then be derived analytically [36]. Using these
expressions, the contact can be readily determined numerically
within the microscopic approach. On the scale of Fig. 2(a), the
resulting contact would be indistinguishable from the solid
line.

(iii) To account for the fact that higher partial wave channels
are affected by the interspecies interactions if the range of
the underlying two-body potential is finite, we generalize the
above effective range treatment to finite angular momenta.
Specifically, we replace the generalized scattering lengths
in the transcendental equations for the higher partial waves
[51] by the corresponding effective range expansions and
determine the corrections to the energy and to the slope of
the energy for vanishing generalized scattering lengths due
to the effective range. Calculating the effective ranges for the
Gaussian potential with r0 = 0.06aho for the lowest few partial
wave channels, we find that the effective range correction
of the contact due to the L = 1 channel is about 0.0003%
and 0.015% for kBT /Eho = 1/2 and 2, respectively. For fixed
T , the corrections decrease with increasing L. Although the
L = 1 channel leads to a larger percentage correction at large
T than at small T , its overall role is negligible since the contact
itself is small in the large T regime.

Overall, the agreement between the contacts calculated
using approaches (i)–(iii) is excellent. To bring out the size
of the finite-range corrections, Fig. 4 shows the difference
between the finite-range and zero-range contacts, normalized
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FIG. 4. (Color online) Range dependence of the contact C1,1

for r0 = 0.06aho as a function of kBT /Eho. The circles show the
difference between the finite-range contact calculated using approach
(i) and the zero-range contact, normalized by the zero-range contact.
The solid line shows the difference between the finite-range contact
calculated using approach (ii) and the zero-range contact, normalized
by the zero-range contact. In the large T limit, the difference
approaches zero from below. In approach (ii), reff = 0.12178aho—
corresponding to VG with r0 = 0.06aho—has been used.

by the zero-range contact. The circles show the relative
difference for the case where the finite-range contact is
calculated using approach (i) while the solid line shows the
relative difference for the case where the finite-range contact
is calculated using approach (ii). The difference is largest at
low T and decreases rapidly. The difference changes sign at
kBT ≈ 1.25Eho and then approaches zero from the negative
side. For kBT � Eho, the percentage deviation is smaller than
0.5% and thus, for all practical purposes, negligible.

A key result of the above analysis is that the two-body
contact is nearly fully determined by the s-wave channel and
that higher partial wave contributions play a negligible role
if the interspecies interactions are modeled by the Gaussian
potential VG with r0 = 0.06aho. This is crucial for our analysis
of the (2,1) system discussed in Appendix D, which assumes
interspecies s-wave zero-range interactions. It also suggests
that our high-temperature results for larger systems, obtained
by using VG with r0 = 0.06aho, are very close to the universal
zero-range results.

APPENDIX D: (2,1) SYSTEM WITH
ZERO-RANGE INTERACTIONS

To determine the contact of the (2,1) system with zero-
range interactions at unitarity, we resort to the hyperspherical
coordinate approach [30,52]. In this approach, the solutions of
the relative Schrödinger equation are obtained in a two-step
process. First, the hyperangular Schrödinger equation is solved
for fixed hyperradius R. Second, a set of coupled hyperradial
Schrödinger equations is solved. For zero-range interactions
with infinitely large s-wave scattering length, the coupling
between the hyperangular and hyperradial degrees of freedom
vanishes and the relative eigen energies at unitarity can be
written as Erel = (2q + sL,ν + 1)Eho, where the hyperradial
quantum number q takes the values 0,1, . . .. The sL,ν are
solutions of the transcendental equation [30,52]

(−1)L 2F1
[

1
2 (L − sL,ν + 2), 1

2 (L + sL,ν + 2); L + 3
2 ; 1

4

]
π (2L + 1)!!

+ 1

�
[

1
2 (L − sL,ν + 1)

]
�

[
1
2 (L + sL,ν + 1)

]
= 1√

2�
[

1
2 (L − sL,ν + 2)

]
�

[
1
2 (L + sL,ν + 2)

] R

as

(D1)

for 1/as = 0. In Eq. (D1), the hyperradius R is defined through
R2 = 2(r2

12 + r2
23 + r2

13)/3 and 2F1 denotes the hypergeomet-
ric function.

To determine the change of the relative energies at
unitarity with −1/as , we replace sL,ν in Eq. (D1) by
sL,ν + 
sL,ν , where |
sL,ν | is assumed to be small. Taylor
expanding Eq. (D1) around the known sL,ν value, we find

sL,ν = cL,νR/as . We insert this into the effective hyper-
radial potential h̄2[(sL,ν + 
sL,ν)2 − 1/4]/(2mR2) and treat
the leading-order correction as a perturbation, i.e., we define
Vpert(R) = h̄2cL,νsL,ν/(mRas). For each sL,ν , we calculate
the exact proportionality constant cL,ν and determine the
change of the relative energy by treating Vpert(R) in first-order
perturbation theory in the hyperradial Schrödinger equation,
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TABLE I. Contact C2,1 as a function of temperature for s-wave
zero-range interactions at unitarity.

kBT /Eho C2,1/a
−1
ho

0.1 10.4986
0.2 10.6717
0.3 10.8225
0.4 10.8529
0.5 10.7047
0.6 10.3479
0.7 9.79272
0.8 9.08421
0.9 8.28504
1.0 7.45680
1.1 6.64831
1.2 5.89176
1.3 5.20435
1.4 4.59212
1.5 4.05395
1.6 3.58469
1.7 3.17735
1.8 2.82444
1.9 2.51872
2.0 2.25359
2.1 2.02320
2.2 1.82248
2.3 1.64710
2.4 1.49338
2.5 1.35820
2.6 1.23893
2.7 1.13335
2.8 1.03959
2.9 0.956067
3.0 0.881422
3.1 0.814516
3.2 0.754375
3.3 0.700163
3.4 0.651166
3.5 0.606768
3.6 0.566439
3.7 0.529719
3.8 0.496209
3.9 0.465562
4.0 0.437476
4.1 0.411684
4.2 0.387954
4.3 0.366081
4.4 0.345884
4.5 0.327202
4.6 0.309894
4.7 0.293834
4.8 0.278908
4.9 0.265017
5.0 0.252072

i.e., by evaluating the integral
∫ ∞

0 |Fq,sL,ν
(R)|2Vpert(R)dR. The

unperturbed radial wave functions Fq,sL,ν
(R) are obtained by

solving the hyperradial Schrödinger equation for the unitary
problem. Using the known expressions for Fq,sL,ν

(R) [30], the
integral can be evaluated analytically, yielding the leading-
order variation of Erel with −1/as for each sL,ν and q =

0,1, . . .. The approach outlined here reproduces the recurrence
relations of Refs. [4,53]. Using MATHEMATICA, the energies
and slopes of the energies of the (2,1) system at unitarity
can be calculated with essentially arbitrary accuracy, thereby
allowing us to calculate the temperature-dependent contact
with high accuracy. In calculating the partition function, care
has to be exercised as the above formalism excludes a large
number of trivial energy levels that are not affected by the
s-wave interactions [30]. We account for these trivial states
using the ideas discussed in Ref. [32].

Table I tabulates the contact C2,1 [see also dotted line in
Fig. 2(b)]. These zero-range results serve as a benchmark for
our PIMC simulations. Moreover, the semianalytic expressions
for the energy and its variation with −1/as can also be
used to calculate the third-order contact coefficient [21].
We find 0.0269223(3), which notably improves upon the
accuracy of the value of 0.02692(2) of Ref. [21]; a more
detailed discussion of the connection between the second- and
third-order contact coefficients [21] and our cluster expansion
is given in Appendix E.

We now refine the two-state model, which was used in
the main text to explain why the maximum of C2,1 occurs
at finite T . Circles in Fig. 5 show the zero-temperature
contacts C̄2,1(Erel

j ), C̄2,1(Erel
j ) = (4πm/h̄2)∂Erel

j /[∂(−a−1
s )],

associated with the j th eigenstate of the (2,1) system at
unitarity as a function of Erel. Figure 5(a) focuses on the
small Erel region while Fig. 5(b) extends up to Erel = 30Eho.
Figure 5 shows that the zero-temperature contacts are non-
negative. Moreover, all C̄2,1(Erel

j ) but one are smaller than

11a−1
ho . The outlier corresponds to the lowest L = 0 state, i.e.,

the state with the second lowest eigenenergy. To calculate the
temperature-dependent contact C2,1 within the microscopic

3 4 50

4

8

12

16

C_ 2,
1( E

jre
l  ) 

/ a
ho

-1

0

0.1

0.2

0.3

0.4

ex
p(

-E
jre

l  / 
k B

T)
 / 

Zre
l

0 10 20 30
Ej

rel / Eho

0

5

10

15

C_ 2,
1( E

jre
l  ) 

/ a
ho

-1

(a)

(b)

FIG. 5. (Color online) (a) The solid, dotted, dashed, and dash-
dotted lines show the weight factor exp[−Erel

j /(kBT )]/Zrel (see right
axis) as a function of the relative energy for kBT /Eho = 0.2,0.4,0.6,

and 0.8, respectively. The circles show the zero-temperature contact
C̄2,1 (see left axis) for states with Erel

j < 5Eho. (b) The dots show the
zero-temperature contact C̄2,1 as a function of the relative energy for
Erel

j � 30Eho. The solid (dashed) line connects the contacts of L = 1
(L = 0) states, which are characterized by the same sL,ν value but
different q values; the sL,ν values chosen are the smallest ones for
both L = 1 and 0.
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approach, the zero-temperature contacts C̄2,1(Erel
j ) need to

be weighted by the temperature-dependent Boltzmann factors
exp[−Erel

j /(kBT )]/Zrel(T ), where Zrel(T ) denotes the parti-
tion function that accounts for the relative degrees of freedom.
Lines in Fig. 5(a) show these weight factors for four different
T , kBT /Eho = 0.2,0.4,0.6, and 0.8. It can be seen that the
weight factor drops off quickly for kBT /Eho = 0.2, indicating
that the outlier as well as the zero-temperature contacts of
the other excited states contribute negligibly to C2,1. At
kBT /Eho = 0.4, in contrast, the outlier carries appreciable
weight compared to the zero-temperature contact of the lowest
eigenstate. At yet higher T , the weight factor falls off slower,
thereby reducing the relative importance of the outlier.

APPENDIX E: CLUSTER EXPANSION IN CANONICAL
ENSEMBLE AND CONNECTION TO VIRIAL EQUATION

OF STATE IN GRAND-CANONICAL ENSEMBLE

This section elaborates on the cluster expansion introduced
in the main part of the text. To further explore the high-
temperature behavior, we Taylor expand C1,1 and C2,1 − 2C1,1

around ω̃ � 1. We find

C1,1 = ω̃5/2
∞∑
i=0

c
(i)
1,1ω̃

ia−1
ho (E1)

and

C2,1 − 2C1,1 = ω̃5/2
∞∑
i=3

c
(i)
2,1ω̃

ia−1
ho . (E2)

Table II lists the dimensionless coefficients c
(i)
1,1 and c

(i)
2,1 for

i � 4.
We now connect the high-temperature cluster expansion

in the canonical ensemble to the more frequently used high-
temperature virial expansion in the grand-canonical ensemble
[54], which assumes large number of particles. For simplicity,
we consider spin-balanced harmonically trapped systems, i.e.,
systems with N1 = N2 = N/2. The contact Cgc in the grand
canonical virial expansion reads [21]

Cgc = 27/2π3/2ω̃−1/2Z1(ω̃)[c2(ω̃)z2 + c3(ω̃)z3 + · · ·]a−1
ho ,

(E3)

where Z1(ω̃) denotes the partition function of a single particle
in a spherically symmetric harmonic trap and z the fugacity,
z = exp(μ/kBT ); here, μ is the chemical potential. The
contact coefficients c2(ω̃) and c3(ω̃) for the trapped system
depend on the temperature and can be derived from the second-
and third-order virial coefficients of the trapped system [21].

TABLE II. High-temperature expansion coefficients c
(i)
1,1 and c

(i)
2,1

for the cluster expansion in the canonical ensemble.

i 0 1 2 3 4

c
(i)
1,1 4

√
π 0

√
π/6 −2

√
π

√
π/96

c
(i)
2,1 −7.012(12) 0.0(1)

In the following, we use the high-temperature expansions

c2(ω̃) = 1

2
√

2π

(
1 − ω̃2

12
+ · · ·

)
(E4)

and

c3(ω̃) = 0.0269223(3) + · · · . (E5)

The high-temperature expansion of the partition function reads

Z1(ω̃) = ω̃−3

(
1 − ω̃2

8
+ · · ·

)
. (E6)

The fugacity z can be determined from the number equation
[21]. Expanding the number equation for small z, we find

z = N

2

(
ω̃3 + ω̃5

8
− 3

8

N

2
ω̃6 + · · ·

)
. (E7)

Inserting the expansions given in Eqs. (E4)–(E7) into Eq. (E3),
we find

Cgc =
(

4
√

π
N2

4
ω̃5/2 +

√
π

6

N2

4
ω̃9/2 − 3

√
π

N3

8
ω̃11/2

− 1.69606(2)
N3

8
ω̃11/2 + · · ·

)
a−1

ho . (E8)

To relate Eq. (E8) to Eqs. (E1) and (E2), we write, in analogy
with Eq. (4) of the main text,

Cgc

N2/4
= Cgc;1,1 + N − 2

2
(Cgc;2,1 − 2Cgc;1,1) + · · · , (E9)

where

Cgc;1,1 = ω̃5/2
∞∑
i=0

c
(i)
gc;1,1ω̃

ia−1
ho (E10)

and

Cgc;2,1 − 2Cgc;1,1 = ω̃5/2
∞∑
i=3

c
(i)
gc;2,1ω̃

ia−1
ho . (E11)

The coefficients c
(i)
gc;1,1 and c

(i)
gc;2,1 are listed in Table III.

Comparison of Tables II and III shows that the coefficients
with i = 0 − 2 agree but that discrepancies exist for i = 3.
Specifically, our analysis shows that the leading order three-
body coefficients agree, i.e., c

(3)
gc;2,1 = c

(3)
2,1, but that the two-

body term at the same order in ω̃ does not agree, i.e.,
c

(3)
gc;1,1 �= c

(3)
1,1. Disagreement is expected since the canonical

and grand-canonical ensembles are known to yield different
results. The fact that the disagreement appears in the term
proportional to N2 and not the term proportional to N3 makes
sense, since our analysis in the grand-canonical ensemble

TABLE III. High-temperature expansion coefficients c
(i)
gc;1,1 and

c
(i)
gc;2,1 extracted from the contact determined in the grand-canonical

ensemble.

i 0 1 2 3

c
(i)
gc;1,1 4

√
π 0

√
π/6 −7.01342(2)

c
(i)
gc;2,1 −7.01342(2)
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assumes large N , rendering the term proportional to N2 less
important than the term proportional to N3.

APPENDIX F: NOTE ON THE TEMPERATURE SCALES

Throughout, we reported the temperature in terms of
the natural energy scale of the harmonic oscillator. Other
relevant temperature scales are the Fermi temperature TF

and the critical temperature Tc. The Fermi temperature of
small harmonically trapped two-component Fermi gases is
defined through the energy of the highest single-particle
state of the noninteracting system, yielding TF = 2.5Eho/kB

for N = 3 − 5. The critical temperature for the trapped
spin-balanced system is Tc ≈ 0.2TF [55]. Our calculations
cover temperatures much smaller and much larger than these
characteristic temperature scales.
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