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While the zero-temperature properties of harmonically trapped cold few-atom systems have been discussed
fairly extensively over the past decade, much less is known about the finite-temperature properties. Working in the
canonical ensemble, we characterize small harmonically trapped atomic systems as a function of the temperature
using analytical and numerical techniques. We present results for the energetics, structural properties, condensate
fraction, superfluid fraction, and superfluid density. Our calculations for the two-body system underline that the
condensate and superfluid fractions are distinctly different quantities. Our work demonstrates that the path-integral
Monte Carlo method yields reliable results for bosonic and fermionic systems over a wide temperature range,
including the regime where the de Broglie wavelength is large, i.e., where the statistics plays an important role. The
regime where the Fermi sign problem leads to reasonably large signal-to-noise ratios is mapped out for selected
parameter combinations. Our calculations for bosons focus on the unitary regime, where the physics is expected
to be governed by the three-body parameter. If the three-body parameter is large compared to the inverse of the
harmonic oscillator length, we find that the bosons form a droplet at low temperature and behave approximately
like a noninteracting Bose and eventually Boltzmann gas at high temperature. The change of the behavior occurs
over a fairly narrow temperature range. A simple model that reproduces the key aspects of the phase-transition-like
feature, which can potentially be observed in cold atom Bose gas experiments, is presented.
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I. INTRODUCTION

Ultracold atomic gases provide a flexible platform for
studying a myriad of phenomena that are driven by quantum
mechanics [1–6]. Generally speaking, quantum statistical ef-
fects dominate when the de Broglie wavelength is comparable
to or larger than the average interparticle spacing. When the
de Broglie wavelength is small, the particle statistics plays
a negligible role and the system dynamics is governed by
Boltzmann statistics. Since the de Broglie wavelength scales
as 1/

√
T [2,3], where T is the temperature, changing the

temperature allows one to turn the particle statistics “on” and
“off.” Atomic gases, which can be cooled to below the quantum
degeneracy temperature, thus provide an ideal platform for
investigating the importance of particle statistics.

For macroscopic samples, a prominent example for a
thermal phase transition is the transition from the normal
to the superfluid phase as observed in bosonic liquid 4He
and fermionic liquid 3He [7]. Bose-Einstein condensation,
the macroscopic occupation of a single-particle state, is
another important example. While Bose-Einstein condensation
occurs for ultracold bosonic atomic gases [1], it does not
occur, at least not directly, for ultracold fermionic atomic
gases [5,8]. Condensation for fermions occurs only when
two fermions form composite bosons (diatomic molecules or
Cooper pairs) [5,8–10]. If the number of particles is finite (as
opposed to infinite), phase transitions get smeared out and
the usual concept, which considers statistical properties in the
thermodynamic limit, has to be revised [11,12].

The main objective of this paper is to study the temperature
dependence of small harmonically trapped atomic Bose and
Fermi systems. To describe these systems, we adopt the
canonical ensemble, i.e., we assume that the system under
study is in thermal contact with a heat bath or thermostat, which
has a large number of particles and a well-defined temperature

T [13]. We monitor various system properties as a function
of the temperature, the number of particles, the particle
statistics, and the interaction strength. Particular emphasis is
placed on the strongly interacting unitary regime, where the
s-wave scattering length diverges. At zero temperature, it is
well established that the particle statistics has a paramount
effect on the system properties. Two-component Fermi gases
with infinitely large interspecies scattering length are fully
described by the s-wave scattering length alone [4,5,14–16],
while the properties of Bose gases additionally depend on a
three-body parameter [17,18]. These fundamental differences,
which are due to the particle statistics, continue to play an
important role at low temperature but die out at sufficiently
high temperature. An interesting question, which we attempt
to answer in this paper, is thus what happens at interme-
diate temperatures. As expected, we find that the low- and
intermediate-temperature behavior of Bose and Fermi gases is
vastly different. For certain parameter combinations, we find
a thermal phase-transition-like feature for Bose systems that
is governed by the three-body Efimov parameter. Specifically,
we find a transition from a dropletlike state to a gaslike state.
No such transition exists for two-component Fermi gases.

The remainder of this paper is organized as follows.
Section II introduces the system Hamiltonian and reviews
the connections between the free-space Efimov spectrum and
the zero-temperature spectrum of the harmonically trapped
three-boson system. Moreover, the path-integral Monte Carlo
(PIMC) approach is introduced and some numerical details are
discussed. Section III presents finite-temperature characteris-
tics of the trapped two-atom system. Emphasis is placed on
the condensate and superfluid fractions. The radial superfluid
density is calculated and analyzed. Section IV discusses our
finite-temperature results for systems with three and more
particles. Section IV A focuses on systems consisting of N

identical bosons, while Sec. IV B considers a trapped gas with
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Bose, Fermi, or Boltzmann statistics with an impurity. Lastly,
Sec. V concludes.

II. THEORETICAL BACKGROUND

A. System Hamiltonian and observables

This section introduces the system Hamiltonian and reviews
two frameworks for determining thermally averaged observ-
ables. We fix the number of particles and work in the canonical
ensemble. We consider N particles with position vectors rj and
mass ma in a spherically symmetric harmonic trap with angular
trapping frequency ω. The model Hamiltonian Ĥ reads

Ĥ = Ĥ0 + V̂ , (1)

where

Ĥ0 =
N∑

j=1

(−�
2

2ma
∇2

j + 1

2
maω

2r2
j

)
(2)

denotes the noninteracting Hamiltonian. The interaction po-
tential V̂ reads

V̂ =
N∑

j=1

N∑
k>j

V
(jk)

tb (rjk), (3)

where rjk (rjk = |rj − rk| = |rjk|) denotes the relative dis-
tance between the j th and kth particles and V

(jk)
tb the interaction

potential for the j th and kth particles. We employ two different
interaction models. Our calculations presented in Sec. III em-
ploy the regularized zero-range Fermi-Huang pseudopotential
V

(jk)
F [19] with s-wave scattering length a

(jk)
s . Our PIMC

calculations presented in Sec. IV employ a finite-range Gaus-
sian potential V (jk)

G , where V
(jk)

G (rjk) = U
(jk)
0 exp[−r2

jk/(2r2
0 )]

with depth U
(jk)
0 (U (jk)

0 < 0) and range r0. The depth and range
are adjusted so that V

(jk)
G yields the desired s-wave scattering

length a
(jk)
s . Throughout, we consider potentials that support

at most one free-space s-wave bound state and whose range r0

is much smaller than the characteristic harmonic trap length
aho, where aho = √

�/(maω).
To calculate thermally averaged quantities, we introduce

the density operator ρ̂ [12,20]:

ρ̂ = e−βĤ , (4)

where β is the inverse temperature β = 1/(kBT ). The ex-
pectation value for an operator Ô is Tr(ρ̂Ô)/Z, where “Tr”
stands for the trace of the matrix that is created by projecting
the operator onto a complete basis set, and Z = Tr(ρ̂) is the
partition function.

A convenient basis set consists of the energy eigenstates
ψj of the Hamiltonian Ĥ . In this case, the density operator is
diagonal and can be written as [12]

ρ̂ =
∑

j

e−βEj |ψj 〉〈ψj |, (5)

where Ej denotes the eigenenergy of state ψj , and the partition
function reads

Z =
∑

j

e−βEj . (6)

The sums in Eqs. (5) and (6) are limited to the energy
eigenstates ψj that have the proper particle statistics. For
N = 2, e.g., the eigenstates can be grouped into states that
are symmetric and those that are antisymmetric under the
exchange of the two particles. If we treat two identical bosons
(fermions), only the symmetric (antisymmetric) states are
included in the sums in Eqs. (5) and (6). Importantly, if the
complete set is known, the thermal average 〈Ô〉 of the operator
Ô can be calculated:

〈Ô〉 = Z−1
∑

j

e−βEj 〈ψj |Ô|ψj 〉. (7)

While the determination of a large number of energy eigen-
states ψj is feasible for small systems, say N � 4, it becomes
unfeasible for larger systems.

An alternative formulation, which forms the starting
point of the PIMC approach [20] (see Sec. II C for de-
tails), projects the density operator onto the position basis
ρnon-symm(R,R′,β) = 〈R | ρ̂ | R′〉. Here, R and R′ collectively
denote the position vectors r1, . . . ,rN and r′

1, . . . ,r
′
N , respec-

tively. The thermal average of the operator Ô then reads

〈Ô〉non-symm = (Znon-symm)−1

×
∫

dR dR′ρnon-symm(R,R′,β)〈R′|Ô|R〉,
(8)

where the partition function Znon-symm,

Znon-symm =
∫

dR ρnon-symm(R,R,β), (9)

is again the trace over the diagonal elements. To properly sym-
metrize or antisymmetrize the density operator, we introduce
the symmetrizer P̂ [20]. For the single-component Bose and
Fermi gases, P̂ can be written as [21]

P̂ = 1

N !

∑
σ

(±1)NI(σ )P̂σ , (10)

where σ denotes the permutation of particle indices, NI(σ )
the number of inversions in σ [22], and P̂σ the corresponding
permutation operator. For two identical fermions, e.g., P̂ reads
(1 − P̂12)/2, where P̂12 exchanges the particle labels 1 and
2. For mixtures, the symmetrizer P̂ has to be generalized
appropriately. The partition function and thermally averaged
observables then read [20]

Z =
∫

dR ρ(P̂R,R,β) (11)

and

〈Ô〉 = Z−1
∫

dR dR′ρ(P̂R,R′,β)〈R′|Ô|R〉. (12)

In addition to the thermally averaged energy E, this work
considers a number of thermally averaged structural properties.
The scaled radial density 4πr2

j ρrad(rj ) with normalization
4π

∫
drjρrad(rj )r2

j = N [23] tells one the likelihood of finding
the j th particle at distance rj from the trap center. The scaled
pair distribution function 4πr2

jkPpair(rjk) with normalization
4π

∫
drjkPpair(rjk)r2

jk = 1 tells one the likelihood of finding
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particles j and k at distance rjk . The hyperradial distribution
function Phyper(R) with normalization

∫
dR Phyper(R) = 1 tells

one the likelihood of finding particles j , k, and l in a
configuration of size R; here, R2 = (r2

jk + r2
kl + r2

j l)/3. For
N = 3, R is the hyperradius (see Sec. II B for details).

We also consider the condensate fraction, superfluid
fraction, and superfluid density. For homogeneous systems,
the condensate fraction nc is typically defined through the
large-distance behavior of the one-body density matrix for
bosons and the two-body density matrix for two-component
fermions [5,8]. It indicates the off-diagonal long-range order
of the system. For inhomogeneous systems, the condensate
fraction is defined as the largest eigenvalue of the one-
and two-body density matrices for bosons and fermions,
respectively [8,24,25]. Intuitively, it is clear that the long-range
behavior is “cut off” by the confinement or the finite extent
of the system, implying that the asymptotic behavior of
the density matrix contains no information about nontrivial
correlations. Section III reports the dependence of the conden-
sate fraction nc on the temperature for two identical bosons
and two distinguishable particles. These studies extend the
zero-temperature calculations of nc presented in Ref. [26] to
finite temperature. The finite-temperature behavior of nc has
previously been reported for two harmonically trapped parti-
cles in one dimension [27] but not, to the best of our knowledge,
for two harmonically trapped particles in three dimensions.

The superfluid fraction ns can be defined in various ways
(see, e.g., Refs. [8,28–30] for a discussion). In this work, we
utilize the moment of inertia based definition, which has its
origin in the two-fluid model [31–34]:

ns = 1 − Iq

Ic
. (13)

The quantum moment of inertia Iq is defined in terms of the
response to an infinitesimal rotation about the z axis,

Iq = β
(〈
L̂2

tot,z

〉 − 〈L̂tot,z〉2
)
, (14)

where L̂tot,z denotes the z component of the total angular
momentum operator L̂tot. The classical moment of inertia Ic is
defined through

Ic =
〈
ma

∑
j

r2
j,⊥

〉
, (15)

where rj,⊥ denotes the distance of the j th particle to the z

axis, rj,⊥ = |rj × ẑ|. The superfluid density is defined such
that ma

∫
dr ρs(r)r2

⊥ = Ic − Iq, where r⊥ denotes the distance
to the z axis [35]. The moment of inertia based definitions of
the superfluid fraction and superfluid density have previously
been applied to a variety of finite-sized quantum liquids
[36–42]. Knowing the complete set of energy eigenstates
and eigenenergies and using Eq. (7), the thermally averaged
expectation values 〈L̂tot,z〉 and 〈L̂2

tot,z〉 can be calculated,
thereby yielding Iq. Within the PIMC approach, the superfluid
fraction and superfluid radial density are evaluated using the
area estimator [34,35,43,44] (see Sec. II C for details on the
PIMC approach).

B. Efimovian states of three identical bosons in a trap

This section reviews the zero-temperature properties of
three identical harmonically trapped bosons. As discussed

in the literature [6], harmonically trapped unitary Bose and
Fermi gases with short-range interactions exhibit universal
properties, provided the range of the interaction is smaller
than all other length scales in the problem. The properties of
the two-component Fermi gas near a broad s-wave resonance
(and away from p- and higher-partial wave resonances) are
governed by the interspecies s-wave scattering length as and
the harmonic oscillator length aho. In the unitarity limit, i.e.,
for |as | = ∞, the s-wave scattering length does not define a
meaningful length scale and the only remaining length scale is
aho [4–6,45,46]. The corresponding energy scale is Eho = �ω.
For three or more identical bosons, an additional parameter,
namely, the three-body parameter κ∗, is needed to describe the
ground-state properties of the Bose gas [17,18,45,46].

The role of κ∗ can be made transparent using the hyper-
spherical coordinate approach [6,18]. To this end, we separate
off the center-of-mass motion and divide the remaining six
coordinates into the hyperradius R and five hyperangles
collectively denoted by 	. In the limit of pairwise additive
zero-range interactions with 1/as = 0, the hyperradial and
hyperangular degrees of freedom are separable [17,18,45]. The
lowest eigenvalue of the hyperangular Schrödinger equation
for the channel with vanishing relative angular momentum
angular l is typically denoted by s0, where s0 ≈ 1.006ı [17,18].
The hyperradial Hamiltonian ĤR can then be written as

ĤR = −�
2

2ma

∂2

∂R2
+ 1

2
maω

2R2 + �
2
(
s2

0 − 1/4
)

2maR2
. (16)

The last term can be interpreted as an effective attractive
potential, which diverges in the R = 0 limit. Without a three-
body parameter, the system exhibits the Thomas collapse [47].
The scaled radial solution in the small-R limit is proportional
to

√
R sin[Im(s0) ln R + θb] [48], where

θb = arg

(
�

(
1
2 − Erel

2Eho
+ s0

2

)
�(1 + s0)

)
(17)

is the three-body phase that determines the short-range
behavior of the hyperradial wave function and Erel denotes
the relative three-body energy. The three-body phase can be
related to the three-body parameter κ∗.

Solving Eq. (17), the solid lines in Fig. 1 show the relative
three-body zero-range eigenenergies as a function of the
three-body phase θb for infinitely large s-wave scattering
length. For a fixed θb, the energies of the negative part of the
energy spectrum are spaced roughly by the factor 515 [48,49].
These geometrically spaced energy levels are the signature
of the three-body Efimov effect. In free space, the spacing
is exactly exp(2π/|s0|) ≈ (22.7)2 ≈ 515 and the three-body
parameter κ∗ is defined as the binding momentum of one of
the Efimov trimers, Erel = �

2κ2
∗/m [18]. Knowing κ∗, the ratio

between consecutive energy levels of the free-space system is
fixed. For the trapped system, corrections arise when the trimer
size approaches the harmonic oscillator length. For the states
with positive energy, the spacing between consecutive states
is approximately 2Eho [48–50].

We now connect the energy spectrum for the Gaussian
interaction model VG with that for the zero-range model. In free
space, the three-body system with pairwise Gaussian interac-
tion supports infinitely many states. The spacing between the
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FIG. 1. (Color online) Relative energy spectrum as a function
of the three-body phase θb for three identical bosons in a har-
monic trap interacting through zero-range potentials with infinite
s-wave scattering lengths. The circle, square, and triangle show
the ground-state energy for the Gaussian two-body interaction with
range r0/aho = 0.06,0.08, and 0.1, respectively. The inset shows the
negative energy regime on a log scale. The spacing between the energy
levels for fixed θb is very close to 515, i.e., very close to the free-space
scaling factor.

ground state and the first excited state at unitarity is (22.98)2

and between the energies of the first excited state and the sec-
ond excited state is (22.7)2. These values are close to the uni-
versal scaling factor. Indeed, the Gaussian interaction model
has been used extensively in the literature to describe Efimov
physics [51–53]. For the trapped system, the ratio between the
range r0 of the two-body interaction and the harmonic oscilla-
tor length comes into play. The circle, square, and triangle in
Fig. 1 show the relative energy of the lowest state of the trapped
system for r0/aho = 0.06, 0.08, and 0.1, respectively. Assum-
ing that the zero-range energy spectrum provides a reasonable
description, Fig. 1 allows us to estimate the three-body phase.

For our purposes, the size of the trimer compared to the
range of the interaction is relevant. For the three r0 considered,
the size of the lowest trimer, as measured by the expectation
value of the hyperradius R, is roughly 0.160aho, 0.212aho,
and 0.266aho, i.e., the trimers are much smaller than aho,
and thus very close to the free-space trimers. The lowest
Efimov trimer is only a bit larger than r0 (the size is about
2.66r0 for all cases), implying that we expect finite-range
effects to be non-negligible. Indeed, Fig. 2 shows that the
hyperradial densities of the lowest state of the finite-range
three-body system (solid and dotted lines) differ notably from
the hyperradial density of the zero-range system (dashed
line). This difference cannot be attributed to the fact that the
hyperradial densities are calculated at finite temperature (the
finite-range T = 0 hyperradial densities are, on the scale cho-
sen, indistinguishable from those shown in Fig. 2) but is due
to finite-range effects. Despite these finite-range corrections,
the Gaussian interaction model allows us to gain insights
into finite-temperature effects that are governed by the lowest
Efimov state of the three-body system (see Sec. IV for details).

C. PIMC approach

This section reviews the finite-temperature continuous-
space PIMC approach [20]. The key idea behind the PIMC
approach is to convert the calculations at low temperature
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FIG. 2. (Color online) Hyperradial density Phyper(R) for three
identical bosons at unitarity. Solid and dotted lines show the PIMC
results at kBT /Eho = 0.4 for the Gaussian model potential with
r0/aho = 0.06 and 0.1, respectively (in the main panel, the curves
are indistinguishable on the scale shown). The main panel and the
inset show the same data but use a different scaling: The main panel
uses units derived from the energy of the three-boson system at T = 0,
while the inset employs harmonic oscillator units. For comparison,
the dashed line shows the hyperradial density obtained using the
zero-range pseudopotential with κ∗ determined by the relative energy
of the finite-range potential.

(large β) into a series of calculations at high temperature.
Specifically, the PIMC approach rewrites exp(−βĤ ) in terms
of the product

∏M
j=1 exp(−τĤ ), where τ = β/M . The idea

is to use a sufficiently small τ (sufficiently large integer
M) so that the integrals involving τ can be factorized with
controllable error. In the calculations reported in Sec. IV,
we use M ≈ 400–7000 (the actual number used depends
on the temperature T and the two-body range r0). Inserting∫
j
|Rj 〉〈Rj | repeatedly, Eq. (12) becomes [20]

〈Ô〉 = Z−1
∫

dR0 . . . dRMρ(P̂R0,R1,τ )

× ρ(R1,R2,τ ) × · · · × ρ(RM−1,RM,τ )〈RM |O | R0〉.
(18)

To evaluate expectation values of operators that probe the
diagonal but not the off-diagonal elements of the real-space
density matrix, only closed paths with P̂R0 = RM are needed.
The density matrix ρ(Rj−1,Rj ,τ ) is, in general, unknown.
Using the second- or fourth-order factorization [20,54,55],
the high-temperature density operator can be divided into the
noninteracting and interacting parts

exp[−τ (Ĥ0 + V̂ )]

= exp

(
−τ

V̂

2

)
exp(−τĤ0) exp

(
− τ

V̂

2

)
+ · · · (19)

and

exp[−τ (Ĥ0 + V̂ )]

= exp

(
−τ

V̂

6

)
exp

(
−τ

Ĥ0

2

)
exp

(
−τ

2Ṽ

3

)

× exp

(
−τ

Ĥ0

2

)
exp

(
−τ

V̂

6

)
+ · · · , (20)
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where Ṽ is given by V̂ + τ 2[V̂ ,[Ĥ0,V̂ ]]/48. For observables
that are determined by the diagonal elements of the density
matrix, these factorizations yield errors that scale as τ 3 and τ 5,
respectively [54]. The noninteracting part of the density matrix
in the position basis can be written compactly as [12,56]

〈R|e−τĤ0 |R′〉 = a−3N
ho [2π sinh(β̃)]−3N/2

× exp

[
− (R2 + R′2) cosh(β̃) − 2R · R′

2 sinh(β̃)a2
ho

]
.

(21)

Here, β̃ denotes the dimensionless inverse temperature β̃ =
βEho. The potential dependent part of the density matrix
reduces to evaluating the potential at the given configuration.

The energy and structural expectation values are calculated
following standard procedures [20]. The superfluid fraction is
calculated using the area estimator [20,34,43]. The superfluid
density is calculated following Ref. [35]. The condensate
fraction requires off-diagonal elements of the density matrix,
i.e., open paths [57]. We have not yet implemented this.

In the high-temperature limit, the particle statistics becomes
negligible and the system behaves, to leading order, as a
noninteracting gas of Boltzmann particles. To analyze the
effects of the particle statistics for systems with two or more
identical particles in the low-temperature regime, we find it
useful to divide the partition function Z into “even” and “odd”
contributions (a closely related definition can be found in
Ref. [58]):

Z = Zeven ± Zodd, (22)

where

Zeven =
∑
Peven

∫
dR ρ(P̂R,R,β) (23)

and

Zodd =
∑
Podd

∫
dR ρ(P̂R,R,β); (24)

the plus and minus signs apply if the system contains identical
bosons and fermions, respectively (here and in the remainder
of this section we assume that the system contains only one
type of identical particles). The sum over Peven includes the
permutations that are characterized by even NI(σ ) and the
sum over Podd includes the permutations that are characterized
by odd NI(σ ). The sum over Podd is only nonzero if the
system under study contains two or more identical particles.
When the temperature is high, only the identity permutation
(and thus only the first term) contributes, i.e., the statistics
is suppressed and the system behaves like a Boltzmann gas.
As the temperature decreases, the relative importance of the
second term increases. In the zero-temperature limit, the two
terms contribute equally. We define the statistical factor S

as the normalized ratio of the “even” and “odd” partition
functions [58,59]:

S = Zeven − Zodd

Zeven + Zodd
. (25)

The statistical factor S approaches 1 in the high-temperature
limit and 0 in the zero-temperature limit. Since the partition
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FIG. 3. (Color online) Statistical factor S for the (N − 1,1) sys-
tem with interspecies potential VG with r0 = 0.06aho and 1/as = 0.
Squares, crosses, triangles, and circles show the statistical factor S as
a function of (a) the temperature T and (b) the inverse temperature
T −1 for N = 3,4,5, and 6, respectively.

function enters into the denominator of the thermal expectation
values, the statistical factor characterizes the numerical de-
mands on the simulation for systems with identical fermions.
The smaller S is, the harder the simulation is. As a rule of
thumb, if we compare the S value for the same system at two
different temperatures, then the simulation time required to
obtain comparable accuracy for the observables at the two tem-
peratures is (Shigh/Slow)2 times larger at the lower temperature
than at the higher temperature (here, Shigh and Slow are the S

values at the higher and lower temperature, respectively). This
phenomenon is known as the Fermi sign problem [58,60–62].
A related interpretation of S is in terms of the “quantum statis-
tics” of the system under study. For both bosons and fermions,
a value of S around 1 indicates that the particles approximately
follow Boltzmann statistics while a value of S close to 0
indicates that exchange effects play an important role.

Figure 3(a) shows the statistical factors as a function of
the temperature for the N -particle system consisting of N − 1
identical particles and one impurity. The identical particles
do not interact while the unlike particles interact through
a Gaussian potential with r0 = 0.06aho and infinite s-wave
scattering length. The statistical factor deviates notably from
one when the temperature is of the order of the “Fermi
temperature” or lower. The Fermi temperature is equal to
5Eho/2 to 7Eho/2 for the (N − 1,1) systems with N = 3–6. At
low temperature, the statistical factor depends exponentially
on the inverse temperature, i.e., S ∝ exp(−βαN ) [58], where
αN increases faster than linear with increasing N . We have
performed reliable calculations for the symbols shown in
Fig. 3. The lowest temperature that can be reached depends,
of course, on the available computational resources. However,
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since the Fermi sign problem increases exponentially with
decreasing temperature, the lower-T limit shown in Fig. 3 is
somewhat generic. The physics of the (N − 1,1) systems with
Bose, Fermi, and Boltzmann statistics is discussed in more
detail in Sec. IV B.

III. CONDENSATE AND SUPERFLUID FRACTIONS
OF THE TWO-BODY SYSTEM

The condensate and superfluid fractions are distinct phys-
ical quantities that vanish when the de Broglie wavelength is
small but differ from zero when the de Broglie wavelength
is large. This section compares the condensate and superfluid
fractions for the simplest interacting system, namely, for two
particles in a harmonic trap with zero-range s-wave interac-
tions. For this system, the eigenspectrum and eigenfunctions
are known in compact analytical form [63], which facilitates
the calculation of nc and ns over a wide temperature range. The
superfluid fraction is calculated using the energy eigenstates
in the moment of inertia based definition [see Eq. (13)].

An important point of this section is that the superfluid
and condensate fractions are meaningful quantities not just
for large systems but also for small systems. We will show in
Sec. IV A that the superfluid fraction of the N boson system is,
for certain parameter combinations, approximated well by that
of a single particle. The superfluid fraction reflects symmetry
properties of the system [30,64,65]. The connection between
superfluidity and angular momentum decoupling mechanisms,
e.g., has been discussed in some detail in the context of
small doped bosonic helium droplets [66,67]. The condensate
fraction is given by the largest eigenvalue of the one-body
reduced density matrix ρred or, equivalently, the largest
occupation number of the natural orbitals [8,24,25]. Since
the natural orbitals are defined by decomposing the reduced
density matrix in a specific way, the occupation numbers, and
hence the condensate fraction, can be interpreted as a particular
measure of the particle-particle correlations of the system. Our
approach for determining the finite-temperature reduced den-
sity matrix of the two-body system (which is discussed in the
following paragraphs) also allows one to determine entangle-
ment measures such as the concurrence [68] and negativity [69]
of the two-particle system over a wide temperature range. Such
calculations appear to have been challenging in the past [70].

The reduced density matrix ρred for the two-particle system
reads

ρred(r′
1,r1,β) = Z−1

∫
dr2ρ(r′

1,r2,r1,r2,β). (26)

Using the separation of the center-of-mass and relative
coordinates, Eq. (26) becomes

ρred(r′
1,r1,β)

= Z−1
∫

dr2ρrel(r′
rel,rrel,β)ρc.m.(r′

c.m.,rc.m.,β), (27)

where rrel = r1 − r2, r′
rel = r′

1 − r2, 2rc.m. = r1 + r2, 2r′
c.m. =

r′
1 + r2,

ρrel(r′
rel,rrel,β)

=
∑
ilm

e−βEi,l ψ∗
ilm(r′

rel)ψilm(rrel), (28)

and

ρc.m.(r′
c.m.,rc.m.,β)

=
∑
QLM

e−βEQ,Lψ∗
QLM (r′

c.m.)ψQLM (rc.m.). (29)

In Eq. (29), EQ,L denotes the center-of-mass eigenenergy,
which can be conveniently written in terms of the principal
quantum number Q (Q = 0,1, . . .) and the center-of-mass an-
gular momentum quantum number L (L = 0,1, . . .), EQ,L =
(2Q + L + 3/2)Eho. The energies are independent of the
projection quantum number M (M = −L,−L + 1, . . . ,L).
In Eq. (28), Ei,l denotes the relative eigenenergy. For two
Boltzmann particles, all l values are allowed. For two iden-
tical bosons, in contrast, only even l values are allowed.
For finite relative angular momentum l, the relative energy
reads Ei,l = (2i + l + 3/2)Eho, where i = 0,1, . . . . For l =
0, i denotes a noninteger quantum number whose values
are determined semianalytically by solving a transcendental
equation [63]. As in the center-of-mass case, the relative
energies are independent of the projection quantum number
m (m = −l,−l + 1, . . . ,l).

To evaluate ρrel, we use the fact that the l > 0 states
are not affected by the zero-range interactions and write
ρrel = ρ

l>0,NI
rel + ρ

l=0,int
rel , where ρ

l>0,NI
rel denotes the l > 0

contributions to the density matrix (these contributions are
independent of the s-wave scattering length) and ρ

l=0,int
rel

the l = 0 contribution that depends on as . To evaluate the
latter, it is convenient to project the interacting l = 0 energy
eigenstates onto the noninteracting harmonic oscillator states
ψi00(rrel) = ∑∞

q=0 C(i)
q ψq00(rrel), where q = 0,1, . . . . The ex-

pansion coefficients C(i)
q are known analytically [26,63]. Now

that ρc.m. and ρrel are expressed in terms of the noninteracting
wave functions in the relative and center-of-mass coordinates,
the integral over dr2 can be performed by reexpressing, using
the Talmi-Moshinsky brackets [71,72], the harmonic oscillator
eigenstates in the relative and center-of-mass coordinates in
terms of the harmonic oscillator eigenstates in the single-
particle coordinates. After integrating over dr2, we project
the reduced density matrix onto single-particle states in the
r1 coordinate. Using the orthogonality of the Clebsch-Gordon
coefficients as well as other standard identities from angular
momentum algebra, the calculation of the matrix elements
simplifies dramatically. The resulting one-body density matrix
is found to be block diagonal in the l and m quantum
numbers. Furthermore, since the lowest l = 0 state always
minimizes the energy, the largest occupation number comes
from the (l,m) = (0,0) submatrix. The results discussed in the
following are obtained by diagonalizing a 20 × 20 submatrix.
Increasing the matrix size to 50 × 50 changes the results by
less than 1%.

The main panel of Fig. 4(a) shows the condensate
fraction nc for two Boltzmann particles as a function of
the temperature for various s-wave scattering lengths as .
Solid, dotted, dashed, dash-dotted, dash-dot-dotted, and dash-
dash-dotted lines are for aho/as = −∞,−2,−1,0,1, and 2,
respectively. As the temperature increases, the condensate
fraction nc decreases for all interaction strengths. At zero
temperature, nc decreases as the inverse scattering length
increases. At finite temperature, however, we observe in some
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FIG. 4. (Color online) The lines show (a) the condensate fraction
nc and (b) the superfluid fraction ns as a function of the temperature
T for two Boltzmann particles with zero-range interaction for various
as . The solid, dotted, dashed, dash-dotted, dash-dot-dotted, and dash-
dash-dotted lines are for aho/as = −∞,−2,1,0,1, and 2, respectively.
In panel (b), the dependence on as is small. The insets compare (a)
the condensate fraction nc and (b) the superfluid fraction ns for two
Boltzmann particles (lines; these are the same data as shown in the
main parts of the figure) and two identical bosons (squares and circles
correspond to aho/as = −∞ and 0, respectively) as a function of the
temperature.

cases [see the kBT ≈ Eho/2 to Eho regime in Fig. 4(a)]
that the condensate fraction increases slightly as |as | (as <

0) increases. This is caused by the interplay of the in-
teraction energy and the temperature-dependent Boltzmann
weight.

The condensate fraction for two identical bosons is very
similar to that for two Boltzmann particles. The inset of
Fig. 4(a) compares the condensate fraction for two identical
bosons (symbols) with those for two Boltzmann particles
(lines) for aho/as = −∞ and 0, respectively. It can be seen
that the condensate fraction for two identical bosons falls
off slightly slower with increasing temperature than that for
two Boltzmann particles. This is because the Bose statistics
excludes the states with odd relative angular momentum l,
implying that the l = 0 states (which are responsible for the
nonzero condensate fraction) are relatively more important for
two identical bosons than for two Boltzmann particles.

For comparison, Fig. 4(b) shows the superfluid fraction
ns for two Boltzmann particles for the same scattering
lengths. The superfluid fraction ns depends weakly on the
s-wave scattering length. Specifically, the superfluid fraction
approaches 1 in the low-temperature regime for all s-wave
scattering lengths. This is a consequence of the fact that the
lowest-energy eigenstate has vanishing total orbital angular
momentum for all s-wave scattering lengths. The inset of
Fig. 4(b) compares the superfluid fraction for two Boltzmann
particles (lines) with those for two identical bosons (symbols).

As in the case of the condensate fraction, the switch from
Boltzmann to Bose statistics changes the superfluid fraction
only by a small amount.

A comparison of Figs. 4(a) and 4(b) shows that the conden-
sate and superfluid fractions are distinctly different quantities.
When the two-body system forms a molecule (for positive
as), the condensate fraction is small. The superfluid fraction,
in contrast, remains approximately 1 in the low-temperature
regime, indicating that the response to an infinitesimal rotation
is largely independent of the size of the system (the density
decreases with increasing 1/as) and instead largely determined
by its spherical shape.

Next, we consider two identical fermions. Naively, this
system might be thought to be “uninteresting” since the
Pauli exclusion principle prohibits scattering in the s-wave
channel. As we show now, two noninteracting identical
fermions display intriguing temperature-dependent behaviors.
For two identical noninteracting fermions, the condensate
fraction equals 1/2 at T = 0 and decreases monotonically. The
superfluid fraction displays [see Fig. 5(c)] a nonmonotonic
dependence on the temperature. As expected, ns is zero in
the high-T limit, increases to around 0.2 at kBT = Eho/2,
and then diverges to −∞ in the zero-temperature limit. As
discussed in Ref. [65], this behavior can be understood by
analyzing the classical moment of inertia Ic and the quantum
moment of inertia Iq [see the Figs. 5(d) and 5(e), respectively].
Specifically, the fact that the lowest-energy eigenstate has
Ltot = 1 is responsible for the increase of Iq at low temperature.
Motivated by the nuclear physics literature [73,74], we refer
to this behavior as “abnormal.”

The fact that the superfluid fraction for two identical
fermions becomes negative in the low-temperature regime can
be understood as follows [65]. Two identical bosons at low
temperature do not respond to an infinitesimal external rotation
(ns → 1 as T → 0) since the lowest-energy eigenstate has
Ltot = 0. Two identical fermions at low temperature, however,
do respond to an infinitesimal external rotation (ns → −∞
as T → 0) since the lowest-energy eigenstate has Ltot = 1.
The physical picture is that the system “speeds up” faster than
we would expect for a normal fluid with the same classical
moment of inertia [65].

To gain further insight into the superfluid properties of
the fermionic system, we analyze the radial and superfluid
densities. The radial densities for particles 1 and 2 are identical
and the subscript j of rj will be dropped in what follows.
Solid, dotted, and dashed lines in Fig. 5(a) show the scaled
radial density 4πρrad(r)r2 for kBT /Eho = 0.5, 0.264 59, and
0.2, respectively. The radial density is fairly insensitive to the
temperature. The radial superfluid density [see Fig. 5(b)], in
contrast, changes notably with the temperature. This is not
unexpected since the superfluid fraction varies strongly in the
low-temperature regime. The radial superfluid density takes
negative values near the trap center and positive values near
the edge of the cloud. The oscillation of the radial superfluid
density reflects the fact that the lowest-energy eigenstate has
total angular momentum quantum number Ltot = 1. For large
r , the probability of finding two particles close to each other
is extremely low. This translates into the Fermi statistics
playing a negligible role. On the other hand, we expect that
the Fermi statistics is much more important near the trap
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FIG. 5. (Color online) Panels (a) and (b) show radial densities
for two identical noninteracting fermions. Solid, dotted, and dashed
lines show (a) the scaled radial total density and (b) the scaled
radial superfluid density, for kBT /Eho = 0.5,0.264 59, and 0.2,
respectively. In panel (a), the dotted line is hardly distinguishable
from the dashed line. The solid lines in panels (c)–(e) show (c)
the superfluid fraction ns , (d) the classical moment of inertia Ic,
and (e) the quantum mechanical moment of inertia Iq as a function
of the temperature T . The diamond, square, and circle mark the
temperatures considered in panels (a) and (b).

center. In the language of path integrals, the “permuted paths”
(i.e., the paths that come from exchanging particles 1 and
2 and thus contribute with a negative sign to the partition
function) are largely concentrated near the center. These
“permuted paths” contribute negatively to the area estimator
and span larger areas compared to the “unpermuted paths.” As
a consequence, the superfluid density is negative near the trap
center.

The analysis presented here for two noninteracting identical
fermions can be extended to two-component Fermi gases
with interspecies s-wave interactions consisting of N = 3
or more particles. Selected results were presented in our
earlier work [65]. We anticipate that the analysis of the
superfluid properties presented in the previous paragraphs
for two noninteracting fermions will inspire other studies, for
bosons or fermions, that are concerned with understanding the
distribution of the superfluid properties in finite-sized systems
or systems with interfaces [35,39–42,66,75–77].
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FIG. 6. (Color online) Energies as a function of the temperature
T for three identical bosons at unitarity interacting through VG with
different r0. Circles and squares show the PIMC results for r0/aho =
0.06 and 0.08, respectively. For comparison, the solid and dotted lines
show the result obtained using the droplet state plus center-of-mass
excitations. The dashed line shows the thermally averaged energy
for three identical noninteracting bosons. Dash-dot-dotted and dash-
dotted lines show results obtained using the simple combined model
for r0/aho = 0.06 and 0.08 (see the text for discussion).

IV. N-BODY SYSTEMS

A. N identical bosons

This section discusses the temperature-dependent proper-
ties of N identical bosons under external spherically symmetric
harmonic confinement interacting through the Gaussian model
potential VG with infinite s-wave scattering length. Circles
and squares in Fig. 6 show the energy of the three-boson
system, obtained from the PIMC simulations, as a function
of the temperature for r0/aho = 0.06 and 0.08, respectively.
For both ranges, the energy shows three distinct regions. The
energy increases approximately linearly at small T , turns
up relatively sharply around kBT = 4Eho or 3Eho, and then
changes again linearly. The energy at low temperature, if
expressed in harmonic oscillator units, shows a strong range
dependence. The energy at high temperature, in contrast, is to
leading order independent of r0. We refer to the rapid change of
the energy from one approximately linear regime to the other
approximately linear regime as a phase-transition-like feature.

We now introduce a simple parameter-free model that
reproduces the energy curves semiquantitatively (see the dash-
dot-dotted and dash-dotted lines in Fig. 6). The assumptions
going into the model are that the low-temperature behavior
is governed by the properties of the lowest Efimov trimer
and that the high-temperature behavior is governed by the
properties of the noninteracting three-boson gas. Treating
only the lowest Efimov trimer state and its center-of-mass
excitations, we obtain the solid and dotted lines in Fig. 6
for r0/aho = 0.06 and 0.08, respectively. These thermally
averaged energies are obtained using the lowest eigenenergy
of the trapped three-boson system, i.e., using the eigenenergy
of the state that shows Efimov characteristics, and summing
over the center-of-mass excitations. The dashed line shows the
thermally averaged energy of three noninteracting identical
bosons. If we combine these two limiting behaviors, the model
partition function Zmodel reads

Zmodel(β) = Zdroplet(β) + Zgas(β), (30)
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where Zdroplet(β) = z(β) exp(−βEdroplet) and Zgas(β) =
[z3(β) + 3z(2β)z(β) + 2z(3β)]/6. Here, Edroplet denotes the
lowest relative eigenenergy of the three-boson system and
z(β) the partition function of a single harmonically trapped
particle. The second and third terms in Zgas originate from
the symmetrization of Zgas. The resulting energies are shown
in Fig. 6 by the dash-dot-dotted and dash-dotted lines for
r0/aho = 0.06 and 0.08, respectively. The agreement between
this simple combined model and the PIMC calculations is very
good.

One may ask why the simple combined model works
so well. We attribute this to primarily two things. First,
for the examples shown in Fig. 6, the energy separation
between the lowest Efimov trimer state and the gaslike states
is large (the case where |Edroplet| is not much larger than Eho is
briefly discussed at the end of this section). Second, although
the system is strongly interacting, the noninteracting Bose gas
model describes the density of states approximately correctly.
The reason is that a significant fraction of the states is not
affected by the s-wave interactions [45]. In fact, if we replace
the partition function Zgas for the noninteracting Bose gas by
the partition function for the noninteracting Boltzmann gas,
then the model predicts that the energy changes rapidly at
a lower temperature than predicted by the PIMC results. If,
on the other hand, we replace the partition function Zgas for
the noninteracting Bose gas by a partition function for three
identical bosons that accounts for the s-wave interactions in
an approximate manner (we reduce the energy of all states that
are affected by the s-wave interactions by Eho), the resulting
energy curves are, on the scale of Fig. 6, indistinguishable
from the dash-dot-dotted and dash-dotted curves.

Circles and squares in Fig. 7(a) show the thermally averaged
PIMC energies for the Gaussian model interaction with
r0/aho = 0.1 and 1/as = 0 for N = 3 and 4, respectively.
As the three-boson system, the four-boson system displays
a “phase-transition-like” feature. To model four- and higher-
body boson systems, we generalize the combined model
introduced above as follows. In Eq. (30), Zdroplet(β) now
denotes the partition function determined by the lowest
N -boson energy state plus center-of-mass excitations and
Zgas(β) denotes the partition function of the noninteracting
N -boson gas. As above, Zgas is properly symmetrized. The
solid line in Fig. 7(a) shows the resulting energy for the
four-boson system. The agreement with the PIMC results is
good. It should be noted that the combined model neglects, for
systems with N > 3, a large number of states. For example,
for the four-boson system, it neglects the excited four-boson
Efimov state whose energy is, in the universal regime, 1.002
times the trimer energy [78] as well as “atom-trimer states”
that can be approximately described as consisting of an
Efimov trimer with the fourth particle occupying one of the
harmonic oscillator states. These states contribute relatively
little to the partition function for two reasons. First, the
separation between the four-body ground-state energy and the
energy of the excited tetramer and the separation between
the four-body ground-state energy and the atom-trimer states
is large (the factor for the former is 4.61 in the universal
regime [78]). Second, the density of states of the atom-trimer
states is negligible compared to the density of states of the
gaslike boson-boson-boson-boson states. We conjecture that
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FIG. 7. (Color online) Phase-transition-like feature for N iden-
tical harmonically trapped bosons interacting through VG with
1/as = 0. (a) Circles and squares show the energy obtained by the
PIMC approach for r0 = 0.1aho and N = 3 and 4, respectively, as a
function of the temperature T . The dotted, solid, and dashed lines
show the energies for N = 3, 4, and 5 obtained using the simple
combined model. (b) The dotted, solid, and dashed lines show the
heat capacity Cv for N = 3, 4, and 5, respectively, as a function of T .

the combined model also provides a good description for larger
Bose systems. We stress that the combined model is fully
analytical, provided that the eigenenergy of the lowest N -body
state, which can be considered as being tied to the lowest
trimer eigenstate, is known. The dashed line in Fig. 7(a) shows
the energy for N = 5 bosons interacting through VG with
r0/aho = 0.1 and 1/as = 0 as a function of the temperature.
This curve is obtained using the combined model with the
eigenenergy of the lowest N = 5 energy eigenstate as input
(see Table I for the energy).

Figure 7(a) shows that the phase-transition-like feature for
fixed r0 moves to higher temperature with increasing N . To
estimate the transition temperature Ttr, we calculate the heat
capacity Cv , Cv = ∂E/∂T . The dotted, solid, and dashed lines
in Fig. 7(b) show Cv , obtained using the combined model for

TABLE I. Relative zero-temperature energy Edroplet for N bosons
interacting through the Gaussian potential VG with diverging s-wave
scattering length. The energies in columns 2 and 5 are obtained by
extrapolating the PIMC results to T = 0. The energies are expressed
in units of the short-range energy scale Esr, Esr = �

2/(mr2
0 ). Column

3 reports the energies from Ref. [79]; no error bars are reported
in that reference. For comparison, our basis-set expansion approach
(see Ref. [80] for a discussion of the approach) yields Edroplet/Esr =
−0.119 23(1) and −0.701 73(5) for N = 3 and 4, respectively.

N Edroplet/Esr Ea/Esr N Edroplet/Esr

3 − 0.1191 7 − 6.544(11)
4 − 0.700(4) − 0.70 8 − 10.075(16)
5 − 1.9127(5) − 1.92 9 − 14.48(2)
6 − 3.839(6) − 3.84 10 − 19.76(4)
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FIG. 8. (Color online) Transition temperature Ttr for N identical
bosons in a harmonic trap at unitarity as a function of N . The transition
temperature is calculated using the simple combined model. The
circles show Ttr using the droplet energies for the Gaussian two-
body interaction model employed in this work. For comparison, the
squares show Ttr using the droplet energies for a model Hamiltonian
with attractive two-body and repulsive three-body interactions [53]
(to obtain the squares, the three-body eigenenergy Edroplet = Etrimer

is chosen such that it agrees with that for the Gaussian two-body
interaction model, i.e., the circle and the square agree for N = 3).

the thermally averaged energy [see lines in Fig. 7(a)], as a
function of the temperature for N = 3, 4, and 5, respectively.
The heat capacity curves show distinct maxima. We define the
transition temperature Ttr as the temperature at which the heat
capacity takes on its maximum.

The circles in Fig. 8 show the transition temperature for N

bosons interacting through VG with r0/aho = 0.1 and 1/as = 0
as a function of N . To obtain the transition temperature,
we extrapolate the PIMC energies at low temperature to
the zero-temperature limit. The resulting zero-temperature
energies Edroplet are reported in Table I. We find that the energy
Edroplet scales with the number of pairs, i.e., as N (N − 1)/2.
This implies that the transition temperature increases linearly
with increasing N .

Since the N -body droplet states are only somewhat larger
than r0, the Gaussian interaction model employed in our
work suffers from finite-range effects and provides only an
approximate description of the N -body Efimov scenario. Note
that the recent work by Gattobigio and Kievsky [79] suggests a
means to correct for these finite-range effects. Here, we pursue
a different approach. To see how the transition temperature
changes when the droplet energies scale to leading order
linearly with N , which is one of the scalings that has been
proposed to hold in the fully universal Efimov scenario [53,81],
we apply our combined model to the data of Ref. [53]. In that
work, the N -boson system was assumed to interact through a
combination of two- and three-body potentials. The resulting
transition temperature Ttr is shown by squares in Fig. 8. The
two cases display different large-N behavior: The transition
temperature increases roughly linearly with N for the Gaussian
two-body model interaction but increases much slower for
the system with two- and three-body interactions. We note
that the finite-temperature behavior of the trapped N = 100
Bose system was investigated by Piatecki and Krauth using
the PIMC approach [82]. In the regime where |Etrimer| is
much larger than Eho, Ref. [82] finds, in agreement with
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FIG. 9. (Color online) Hyperradial density Phyper(R) for three
identical bosons at unitarity interacting through VG with r0 = 0.06aho

for various temperatures T . Dash-dash-dotted, solid, dotted, dashed,
and dash-dotted lines are for kBT /Eho = 3,4,5,6, and 7, respectively.
Panel (a) shows the small-R region while panel (b) shows the large-R
region. Note that panels (a) and (b) have different scales for the x and
the y axes.

our work, a transition from a droplet state to a gaslike state.
Reference [82] refers to the phase that is governed by the
droplet state as Efimov liquid phase. We emphasize that our
calculations neglect decay to nonuniversal states. Such states
would need to be accounted for if one wanted to analyze the
stability of the droplet phase.

We now discuss the system characteristics below and above
Ttr in more detail. As already mentioned in Sec. II B, the
hyperradial distribution functions Phyper(R) for the three-boson
system interacting through VG with ranges r0 = 0.06aho and
0.1aho at low temperature (see Fig. 2 for kBT = 0.4Eho) are
essentially identical to the free-space three-boson systems
with the same r0 at zero temperature. Figure 9 shows the
temperature dependence of Phyper(R) for N = 3 and r0 =
0.06aho. The dash-dash-dotted line shows the hyperradial
distribution function for kBT = 3Eho, i.e., for a tempera-
ture below Ttr. For this temperature, Phyper(R) exhibits a
maximum at R ≈ 0.15aho and falls off monotonically at
larger R. For slightly larger T , i.e., kBT = 4Eho (solid
line), the maximum at R ≈ 0.15aho is smaller and a second
peak at R ≈ 4–5aho appears. At yet higher T (above the
transition temperature), the amplitude of the large-R peak
is more pronounced and the hyperradial distribution func-
tion resembles that of a gaseous system. The temperature
dependence of the hyperradial distribution function for the
N = 3 system supports our interpretation introduced above,
namely, the notion that the system undergoes a transition
from an Efimov trimer to a gas state as the temperature
changes from below to above Ttr. The hyperradial distribution
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FIG. 10. (Color online) Superfluid fraction ns as a function of
the temperature T for N identical bosons at unitarity. The circles and
squares show the PIMC results for the Gaussian potential VG with
r0 = 0.1aho for N = 3 and 4, respectively. The error bars are smaller
than the symbol size. For comparison, the solid line shows the result
obtained using a single-particle model (see text for discussion).

functions for larger systems show analogous behavior, i.e.,
they support the notion that the system undergoes a transition
from an N -body droplet state to a gas state with increasing
temperature.

To further characterize the properties of the N -boson
system, symbols in Fig. 10 show the superfluid fraction ns

as a function of the temperature for N = 3 and 4 obtained
using the PIMC approach (here, r0 = 0.1aho and 1/as = 0).
The superfluid fractions for these two system sizes seem
to fall on one curve. The solid line, which is obtained
analytically (see the following discussion for the model that
produces the solid line), provides a good description of the
numerical data. Figure 10 suggests that the superfluid fraction
approaches one in the zero-temperature limit and is smaller
than 0.05 for kBT � 2Eho. From Figs. 6 and 7 and the
surrounding discussion, we know that the temperature regime
kBT � 2Eho is, for the parameters considered, well described
by the partition function Zdroplet, i.e., the system behavior is
dominated by the lowest N -droplet energy eigenstate and its
center-of-mass excitations. In particular, this means that the
droplet itself can be considered as “frozen.” Correspondingly,
we expect that the behavior of the superfluid fraction displayed
in Fig. 10 is approximately described by that of a single
harmonically trapped particle of mass Nma (see the solid
line in Fig. 10). We observe that the PIMC points lie slightly
above the solid line. This could be due to the fact that the
classical moment of inertia calculated using the single-particle
framework is slightly smaller than the classical moment of
inertia calculated using the full Hamiltonian.

We now relate the falloff of the superfluid fraction to the
transition temperature. As discussed above, the falloff of ns

is governed by center-of-mass excitations, i.e., the relevant
temperature scale is set by the harmonic oscillator frequency.
To make some estimates, we say that the superfluid fraction,
defined through the moment of inertia, is “undetectably small”
for kBT around 2Eho, independent of the number of particles
and interaction model. This estimate assumes that the absolute
value of the eigenenergy of the lowest droplet state is large
enough for Zdroplet to provide a reasonably accurate description

of the low-temperature dynamics. For the three- and four-body
systems, this implies that |Edroplet| has to be larger than
a few times Eho. For cold atom systems, the three-body
parameter is found to be approximately universal [51,83,84],
i.e., a− ≈ −9.7RvdW, where RvdW denotes the van der Waals
length and a− the scattering length at which the Efimov
trimer merges with the three-atom continuum. Using this
approximate universality together with the known relation
between a− and κ∗ [18], we estimate that Etrimer is roughly
equal to −0.024EvdW at unitarity. Here, EvdW is defined
as EvdW = �

2/(maR
2
vdW). For Cs in a spherically symmetric

harmonic trap with a frequency ν ≈ 2 kHz (a value that can
be reached easily), the Efimov trimer would have an energy
of about −33Eho (the system is approximately described by
the circles in Fig. 6). For these experimental conditions, the
superfluid fraction is vanishingly small for T � Ttr.

A key ingredient of the above analysis is that the falloff of
the superfluid fraction is due to the center-of-mass excitations.
This suggests an alternative viewpoint that defines the super-
fluid fraction with respect to the relative degrees of freedom
only. If we replace the z component L̂tot,z of the total orbital
angular momentum operator in Eq. (14) by the z component of
the relative orbital angular momentum operator and modify the
definition of the classical moment of inertia accordingly, then
we find that the falloff of the superfluid fraction is correlated
with the transition temperature. The spirit of the latter approach
underlies the arguments of Ref. [82], which considers a Bose
gas with N = 100 and refers to the phase governed by the
N -droplet state as superfluid phase. We emphasize, however,
that Ref. [82] did not perform any quantitative calculations of
the superfluid fraction or superfluid properties of the system.
Instead, Ref. [82] put forward qualitative arguments based on
the exchange paths.

We reiterate that the combined model breaks down when
|Edroplet| is not much larger than Eho, i.e., when the size of the
trimer approaches the harmonic oscillator length. In this case,
the lowest Efimov trimer does not define a separate energy
scale and the phase-transition-like feature discussed in this
work disappears. Qualitatively, we expect that the Bose gas
with N = 3,4, . . . changes from having a significant superfluid
fraction to a small superfluid fraction as the temperature
increases from zero to a few times Eho. The N = 100 case
has been considered in Ref. [82].

B. Single-component gas with a single impurity

This section considers a single-component gas consisting of
N − 1 particles with an impurity. We assume that the impurity
interacts with the N − 1 “background” atoms through the
Gaussian potential VG with diverging s-wave scattering length
as . The background atoms do not interact with each other.
Our goal is to investigate the temperature dependence of the
system properties as the statistics of the N − 1 background
atoms changes from Bose to Boltzmann to Fermi statistics. As
before, we consider equal mass systems. Efimov trimers do
not exist for two identical fermions and a third distinguishable
particle (in our case, the impurity) [18,85]. For two identical
bosons and a third particle or two Boltzmann particles (i.e.,
two distinguishable particles) and a third particle, however,
Efimov trimers can exist [86]. An interesting question is thus
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how the finite-temperature properties of the (N − 1,1) system
with N � 3 depend on the statistics.

From the discussion in the previous subsection it is clear
that the properties of the trimer at low temperature determine
the characteristics of larger Bose systems provided |Etrimer| is
much larger than Eho. Throughout this section, we consider
the situation where the lowest-energy eigenstate of the (2,1)
system with Bose statistics has an energy comparable to Eho,
i.e., |Etrimer| ≈ Eho [note, the lowest-energy eigenstate of the
(2,1) system with Boltzmann statistics has the same energy].
For the same model interactions, the lowest-energy eigenstate
of the (2,1) system with Fermi statistics also has an energy
comparable to Eho; the energy for the system with Fermi
statistics is, however, larger than that for the system with Bose
statistics. We will show that the low-temperature properties of
the (N − 1,1) systems display, as might be expected naively,
statistics-dependent characteristics for temperatures around or
below Eho. Concretely, we focus on systems with interspecies
Gaussian interactions with r0 = 0.06aho and 1/as = 0. The
relative ground-state energy of the harmonically trapped (2,1)
system with Bose statistics is 0.508Eho [or 141�

2/(mr2
0 )].

For comparison, the relative ground-state energy of the corre-
sponding free-space system is −18.1�

2/(mr2
0 ), indicating that

the trap modifies the lowest-energy eigenstate of the free-space
system with Efimov characteristics. The relative ground-state
energy of the harmonically trapped (2,1) system with Fermi
statistics is 2.785Eho. The corresponding free-space system is
not bound [6].

Figure 11 shows the scaled pair distribution functions
r2
j4Ppair(rj4), j < 4, for the (3,1) system with r0/aho = 0.06

and 1/as = 0 for different statistics and temperatures. The
dotted, dashed, and solid lines are for Bose, Fermi, and
Boltzmann statistics, respectively. Figures 11(a)–11(d) are for
kBT /Eho = 0.6, 1.2, 2, and 3, respectively. At high temper-
ature [see Fig. 11(d)], the pair distribution functions are to a
very good approximation independent of the particle statistics.
As the temperature decreases [see Fig. 11(c)], the particle
statistics has a visible effect on the pair distribution functions.
In the PIMC language, the temperature in Fig. 11(c) is such that
the “permuted paths” contribute only a small fraction to the
partition function. This implies that the particle statistics can be
treated perturbatively, i.e., the partition functions ZBose(β) and
ZFermi(β) of the systems with Bose and Fermi statistics can
be written approximately as [ZBoltz(β) ± �Z(β)]/3!, where
ZBoltz(β) denotes the partition function of the system with
Boltzmann statistics and �Z(β) a small correction. The factor
of 1/3! arises due to the presence of the three identical particles
(bosons or fermions). Correspondingly, the sum of the energies
of the systems with Bose and Fermi statistics equal, to a
good approximation, twice the energy of the system with
Boltzmann statistics. Indeed, for the temperature considered in
Fig. 11(c), we find E/Eho = 23.86(2), 23.33(2), and 22.76(1)
for Fermi, Boltzmann, and Bose statistics, respectively. The
energy differences are 0.53(4) and 0.57(3), in agreement with
the expectation based on the perturbative argument.

For yet lower temperatures, the particle statistics becomes
nonperturbative. In Fig. 11(b), e.g., the pair distribution
functions for the three different statistics differ notably. In
Fig. 11(a), the pair distribution functions for the systems with
Boltzmann and Bose statistics are nearly indistinguishable and

1

2

4π
 r

j4

2  P
pa

ir
(r

j4
) 

a ho

0.5

1

0.1

0.2

0.3

0 2 4 6 8
r
j4

 / a
ho

0.1

0.2

0.3

(c)

(b)

(d)

(a)

FIG. 11. (Color online) Scaled pair distribution functions
r2
j4Ppair(rj4) (j < 4) for the (3,1) system with interspecies interaction

VG with r0 = 0.06aho and diverging interspecies scattering
length as at temperature (a) kBT /Eho = 0.6, (b) kBT /Eho = 1.2,
(c) kBT /Eho = 2, and (d) kBT /Eho = 3. Dashed, solid, and dotted
lines are for systems with Fermi, Boltzmann, and Bose statistics,
respectively. The error bars are comparable to or smaller than
the linewidths. In panel (a), the solid and dotted lines are hardly
distinguishable. In panel (d), all three lines nearly coincide.

notably different from the pair distribution function for the
system with Fermi statistics. This can be explained as follows.
The systems with Bose and Boltzmann statistics have the same
ground-state energy while the system with Fermi statistics has
a notably larger ground-state energy. Due to the absence of
bound trimer states for the system with Fermi statistics for
vanishing confinement (i.e., for w = 0), the pair distribution
function is fully determined by the trap length and the
temperature [4–6]. For the systems with Bose and Boltzmann
statistics, the pair distribution function takes on large values at
small r , reflecting the fact that these systems form a dropletlike
state for vanishing confinement. An important consequence is
that the two-body contacts for the systems with Bose and
Boltzmann statistics are, in the low-temperature regime, much
larger than the two-body contact for the system with Fermi
statistics.

Symbols in Fig. 12 show the superfluid fraction ns as
a function of the temperature for the (3,1) system with
interspecies potential VG with r0 = 0.06aho and infinitely large
s-wave scattering length. Circles, crosses, and squares are for
Bose, Boltzmann, and Fermi statistics, respectively. As the
temperature decreases, the superfluid fraction increases for
the systems with Boltzmann and Bose statistics and reaches
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FIG. 12. (Color online) Superfluid fraction ns as a function of
the temperature T for the (3,1) system with interspecies potential
VG with r0 = 0.06aho and 1/as = 0. The circles, crosses, and squares
are obtained from the PIMC simulations with Bose, Boltzmann, and
Fermi statistics, respectively. The error bars are only shown when they
are larger than the symbol size. For comparison, dotted, solid, and
dashed lines show the superfluid fraction for the noninteracting (3,1)
systems with Bose, Boltzmann, and Fermi statistics, respectively.

1 at zero temperature. The superfluid fraction of the (3,1)
system with Fermi statistics lies below that for the (3,1)
system with Bose and Boltzmann statics at high temperature.
Our calculations go down to kBT = 0.6Eho. Based on our
earlier work [65], we expect that the superfluid fraction for
the system with Fermi statistics will take on negative values
as the temperature approaches zero. At high temperature, the
perturbative analysis, introduced earlier for the energy, can
be applied to the superfluid fraction. The “permuted paths”
contribute perturbatively to the quantum moment of inertia
and the classical moment of inertia. The combination of
the two gives rise to a correction of the superfluid fraction
calculated from the “unpermuted paths,” i.e., a correction to
the superfluid fraction for the (3,1) systems with Boltzmann
statistics due to the exchanges of identical particles. At kBT =
2Eho, we find ns = 0.039 76(5), 0.041 32(1), and 0.042 94(3)
for the (3,1) systems with Fermi, Boltzmann, and Bose
statistics, respectively. The differences are 0.001 56(6) and
0.001 62(4), in agreement with the expectation based on the
perturbative argument. For comparison, dotted, solid, and
dashed lines show the superfluid fraction for the noninteracting
(3,1) systems with Bose, Boltzmann, and Fermi statistics,
respectively. For the system with Bose statistics, the unitary
interactions change the superfluid fraction only slightly. For
the system with Boltzmann statistics, the interactions have a
notably larger effect on the superfluid fraction. The nontrivial
shift comes from the interplay between the temperature and
the interactions.

Finally, we comment that the single-particle model, where
the droplet is described as a single particle of mass Nma, is not
applicable. The superfluid fraction for this model coincides
with the solid line in Fig. 12. If |Etrimer| was much larger
than Eho, we would expect that the superfluid fraction for the
systems with Bose and Boltzmann statistics would follow the
solid line. The fact that the symbols deviate from the solid
line indicates that the single-particle model is not applicable.
Interestingly though, the superfluid fraction seems to only
change weakly as Etrimer/Eho changes, suggesting that ns is

not a sensitive probe of the phase-transition-like feature or
absence thereof.

V. CONCLUSIONS

This paper considered the finite-temperature properties of
small s-wave interacting systems under spherically symmetric
harmonic confinement. For two particles in the harmonic
trap, we compared the condensate and superfluid fractions
as a function of the temperature. The role of the particle
statistics on these quantities was discussed. For two Boltzmann
particles, the condensate fraction exhibits a strong dependence
on the interaction strength, while the superfluid fraction is only
weakly dependent on the interaction strength. Changing from
Boltzmann to Bose statistics changes the observables by a
relatively small amount, while changing from Boltzmann to
Fermi statistics introduces significant quantitative changes.

We further considered N bosons with finite-range two-body
Gaussian interactions at unitarity in the regime where the
absolute value of the N -boson droplet energy |Edroplet| is much
larger than the harmonic oscillator energy. We observed a
sharp transition as the temperature increases from a liquid
dropletlike state to a gaslike state. The energy, heat capacity,
hyperradial distribution function, and superfluid fraction were
monitored as a function of the temperature. A simple model
that semiquantitatively captures the entire temperature regime
was proposed. The model was not only applied to systems
with Gaussian interactions, but also to systems with two-
and three-body interactions. No evidence for “intermediate
phases” such as a gas consisting of trimers or tetramers was
found. Finally, we considered the (3,1) system with infinitely
large interspecies scattering length. We compared the pair
distribution function for systems with Bose, Boltzmann, and
Fermi statistics. We established that the statistics can be treated
perturbatively at high temperature.

In the future, it will be interesting to extend the few-body
studies presented here to a larger number of particles. For
bosons, this should be fairly straightforward. For fermions,
however, the sign problem will place constraints on the tem-
perature regime that can be covered. Large weakly interacting
trapped N -boson systems at finite temperature have been stud-
ied using classical field theory and other approaches [87,88].
These approaches assume that the system is in a gaslike state
and capture the shift of the transition temperature from a
thermal gas to a Bose-Einstein condensate with the number
of particles. These techniques are, however, not applicable
when the s-wave scattering length becomes infinitely large.
In this regime, beyond mean-field approaches are needed.
Earlier work based on the ε or 1/N expansion [89,90],
renormalized interactions [91], and the diffusion Monte Carlo
approach [92] treated unitary interactions but were restricted
to zero temperature. The PIMC approach employed here and in
Ref. [82] provides, in our view, a powerful means to study the
finite-temperature behavior of the strongly correlated N -boson
system over a wide range of system sizes.

An important question is if the N -boson droplet state
discussed here can be probed experimentally. Our calculations
excluded nonuniversal energetically lower-lying states, which
could lead to atom losses. Moreover, we assumed that the
system is in thermal equilibrium. In practice, experimental

013620-13



YANGQIAN YAN AND D. BLUME PHYSICAL REVIEW A 90, 013620 (2014)

investigations will have to work in a parameter regime where
the equilibration time is faster than the atom loss time. It
remains an open question if quench experiments such as those
recently conducted at JILA [93] could, if applied to small
systems, probe the phase-transition-like feature discussed in
this work. A possible scheme would be to start with a weakly
interacting system with known but variable temperature, to
jump the magnetic field to unitarity, and last to probe the
system after a variable hold time.

Our calculations for few-fermion systems showed that a
temperature of less than Eho/kB leads to notable changes in
the structural properties. This suggests that the analysis of few-
fermion experiments has to account for finite-temperature ef-
fects. A similar conclusion was reached in Refs. [94,95], which

considered (motivated by the Heidelberg experiments [96–98])
the temperature dependence of one-dimensional few-fermion
systems.
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