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Energy and structural properties of N-boson clusters attached to three-body Efimov states:
Two-body zero-range interactions and the role of the three-body regulator
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The low-energy spectrum of N -boson clusters with pairwise zero-range interactions is believed to be governed
by a three-body parameter. We study the ground state of N -boson clusters with infinite two-body s-wave scattering
length by performing ab initio Monte Carlo simulations. To prevent Thomas collapse, different finite-range
three-body regulators are used. The energy and structural properties for the three-body Hamiltonian with two-body
zero-range interactions and three-body regulator are in much better agreement with the “ideal zero-range Efimov
theory” results than those for Hamiltonian with two-body finite-range interactions. For larger clusters we find that
the ground-state energy and structural properties of the Hamiltonian with two-body zero-range interactions and
finite-range three-body regulators are not universally determined by the three-body parameter, i.e., dependencies
on the specific form of the three-body regulator are observed. For comparison, we consider Hamiltonian with
two-body van der Waals interactions and no three-body regulator. For the interactions considered, the ground-state
energy of the N -body clusters is—if scaled by the three-body ground-state energy—fairly universal, i.e., the
dependence on the short-range details of the two-body van der Waals potentials is small. Our results are compared
with those in the literature.
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I. INTRODUCTION

The unitary regime, where the two-body s-wave scattering
length is infinitely large, can be reached in ultracold dilute
atomic gases using Feshbach resonance techniques [1]. Two-
component Fermi gases were realized experimentally and
found to be stable and universal even in the large s-wave
scattering length regime [2–4]; i.e., the properties of the system
were found to be governed, to a very good approximation, by
the s-wave scattering length as alone and independent of the
details of the interaction potential [5–7]. Unitary Bose gases, in
contrast, are short lived [8–10]. Their properties depend on the
details of the interaction potential. Typically, this dependence
is encapsulated by a three-body parameter [11].

Efimov predicted that three identical bosons interacting
through two-body potentials with infinitely large s-wave
scattering length as and vanishing effective range support an
infinite number of three-body bound states [12]. The binding
momenta κ

(n)
3 of the trimers (n labels the states) display

a geometric scaling, i.e., κ
(n)
3 /κ

(n+1)
3 ≈ 22.6944 [11,12]. If

the binding momentum of one trimer is known, that of
the other trimers is also known. Importantly, the binding
momenta themselves cannot be determined solely from a
theory that is based on two-body zero-range potentials.
Rather, a three-body parameter is needed to regularize the
problem (i.e., to set the absolute scale of the three-body
spectrum). The three-body regulator can be introduced in
many ways. In this work, we consider three different reg-
ularization approaches: (i) a Hamiltonian with two-body
zero-range potentials and a zero-range three-body potential,
(ii) a Hamiltonian with two-body zero-range potentials and a
purely repulsive three-body potential, and (iii) a Hamiltonian
with finite-range two-body potentials and no three-body
potential.

Much less is known about four- and higher-body systems
at unitarity [13–21]. N -body cluster states are believed to

be attached to each trimer, i.e., for a trimer with binding
momentum κ

(n)
3 , two N -body states are believed to exist with

binding momenta C
(1)
N κ

(n)
3 and C

(2)
N κ

(n)
3 , where C

(1)
N and C

(2)
N are

dimensionless parameters that do not depend on n. Whether
four- and higher-body parameters exist has been under debate
in the literature.

The study of N -body states attached to Efimov trimers is
challenging for several reasons. To date, no analytical solutions
for N � 4 exist. Numerical treatments have to be capable
of describing vastly different length scales. For finite-range
two-body interactions, the lowest trimer state is typically not a
“pure” Efimov state. Thus, one would ideally like to investigate
N -body droplets that are tied to the first- or second-excited
trimer states. The corresponding N -body states (N � 4; see
Fig. 1 for an illustration of the four-body spectrum as a function
of 1/as) are not bound states but resonance states, which are
not stable with respect to breakup into smaller subunits. Thus,
the numerical approach of choice would ideally be capable of
treating N -body resonance states whose size is many orders
of magnitude larger than the range of the underlying two-body
potential.

To bypass these numerical challenges, this work pursues,
as have other works before [21,23], an approach that considers
N -body droplets (the thick dashed lines in Fig. 1 show the two
four-body states) tied to the energetically lowest-lying trimer
state (thick solid line in Fig. 1). To ensure that the trimer
ground state has the key characteristics of a true Efimov trimer
state, we employ two-body zero-range interactions together
with a purely repulsive three-body potential that serves as
a regulator; we refer to this model as 2BZR + 3BRp (2B,
ZR, 3B, and R stand for two-body, zero-range, three-body,
and repulsive, respectively, and p denotes the power of the
repulsive three-body potential; see below). The forms of V2B

and V3B for the model 2BZR + 3BRp are given in Table I and
the Hamiltonian H for N particles with mass m and position

1050-2947/2015/92(3)/033626(12) 033626-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.92.033626


YANGQIAN YAN AND D. BLUME PHYSICAL REVIEW A 92, 033626 (2015)

sgn(as) |as|
-1/4

sg
n(

E)
 |E

|1/
8

FIG. 1. (Color online) Schematic illustration of the energy spec-
trum for four identical bosons. The x marks the (1/as,E) = (0,0)
point. The dotted line shows the energy of the weakly bound dimer.
The solid lines show different Efimov trimer states, which become
unbound on the positive scattering length side at the atom-dimer
threshold. The dashed lines show “ground state” and “excited state”
tetramers that are attached to each Efimov trimer. These tetramer
states hit the dimer-dimer threshold on the positive scattering length
side (the energy of the two dimers is shown by the dash-dotted line).
It should be noted that the excited tetramer state turns into a virtual
state for a certain region of positive scattering lengths [22]; this detail
is not reflected in the plot.

vector rj reads

H = −
N∑

j=1

�
2

2m
∇2

j +
N∑

j<k

V2B(rjk) +
N∑

j<k<l

V3B(Rjkl), (1)

where the two-body potential V2B depends on the interpar-
ticle distance vector rjk (rjk = rj − rk) and the three-body

TABLE I. Summary of potential models considered in this work.
For each model, the two-body potential V2B and the three-body
potential V3B are listed. V2B for 2BZR + 3BZR, 2BZR + 3BHC,
and 2BZR + 3BRp is the Fermi-Huang pseudopotential [24]; as is
set to infinity. VZR(R) for 2BZR + 3BZR is treated as a zero-range
boundary condition. VHC,R0 (R) is the hard-core repulsive potential;
VHC,R0 (R) = 0 for R > R0 and VHC,R0 (R) = ∞ for R < R0. V0 and
r0 for 2BG, c12 and c6 for 2BLJ, c10 and c6 for 2B10-6, and c8 and
c6 for 2B8-6 are chosen such that the s-wave scattering length is
infinitely large and the two-body system supports one zero-energy
s-wave bound state.

Model V2B V3B

2BZR + 3BZR 4π�
2

m
asδ

(3)(r) ∂

∂r
r VZR(R)

2BZR + 3BHC 4π�
2

m
asδ

(3)(r) ∂

∂r
r VHC,R0 (R)

2BZR + 3BRp 4π�
2

m
asδ

(3)(r) ∂

∂r
r

Cp

Rp

2BG V0 exp[−r2/(2r2
0 )]

2BLJ c12
r12 − c6

r6

2B10-6 c10
r10 − c6

r6

2B8-6 c8
r8 − c6

r6

potential V3B depends on the three-body hyperradius Rjkl ,

Rjkl =
√(

r2
jk + r2

j l + r2
kl

)
/3. (2)

Importantly, the N -body Hamiltonian H is well behaved, i.e.,
the ground state is well defined thanks to the three-body
regulator. As we show in Sec. II, the three-body regulator
produces three-body states that share many characteristics with
the pure three-body Efimov state. Pure three-body Efimov
states are obtained if the two-body interactions are of zero
range and the hyperradial boundary condition at R123 = 0 is
specified [11]. Since the hyperradial boundary condition or
logarithmic derivative can be imposed via a δ function in the
hyperradius, we refer to this model as 2BZR + 3BZR.

Our work considers the N -body ground state using a novel
Monte Carlo approach [25] that allows for the treatment of two-
body zero-range interactions. The Monte Carlo approach can
unfortunately not treat three-body zero-range interactions; i.e.,
it is not capable of treating the Hamiltonian 2BZR + 3BZR. A
key objective of the present work is then to investigate how the
properties of N -body droplets in the ground state, supported
by the model Hamiltonian 2BZR + 3BRp, change with the
number of particles and with the power p of the three-body
regulator. An important question is to which degree the N -body
properties are determined by the three-body parameter.

For comparison, we also consider Hamiltonian with finite-
range two-body Gaussian or van der Waals interactions
and no three-body interaction. The ground-state manifolds
of these models, referred to as 2BG, 2BLJ, 2B10-6, and
2B8-6 (see Table I), lack—as we show—a number of key
Efimov characteristics. Two-body Gaussian interactions have
been employed extensively in the literature [19,21,26–28],
sometimes also in combination with a repulsive three-body
regulator [23,29].

Although the structural properties of the ground-state
trimers for the Hamiltonian with two-body van der Waals
interactions differ notably from those for the pure Efimov
trimer [30,31], these systems exhibit universal features [27,32–
39]. Specifically, the trimer ground-state binding momentum
κ

(1)
3 at unitarity is, to a good approximation, determined

by the van der Waals length LvdW [27,39] and independent
of the short-range details. For the two-body Lennard-Jones
potential, one finds κ

(1)
3 ≈ 0.230/LvdW [40], where LvdW =

(
√

mc6/�)1/2/2. This relationship is nowadays being attributed
to van der Waals universality. Moreover, the binding momen-
tum spacing of 23.4 between the ground state and the first
excited state is quite close to the spacing of 22.6944 exhibited
by consecutive pure Efimov trimers [40]. It is thus interesting
to investigate if van der Waals universality exists for N > 3,
i.e., to answer the question whether the N -body ground-state
energy depends on the short-range details of the two-body van
der Waals potential.

The remainder of this paper is organized as follows.
Section II compares the properties of the three-boson system
with infinitely large s-wave scattering length interacting
through 2BZR + 3BZR, 2BZR + 3BHC, and 2BZR + 3BRp

and illustrates the benefits and limitations of these models.
Section III reviews several literature results for N -body
droplets. Section IV extends the calculations for the
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2BZR + 3BRp interaction model to clusters with N � 15.
In addition to the energy, various structural properties are
discussed in detail. Section V compares the results for the
model 2BZR + 3BRp with those for systems with two-body
finite-range interactions (i.e., for the models 2BG, 2BLJ,
2B10-6, and 2B8-6). Finally, Sec. VI concludes.

II. THREE-BODY SYSTEM AT UNITARITY

To understand the three-body system, it is instructive to
rewrite the Hamiltonian H , Eq. (1), for N = 3 in hyper-
spherical coordinates [41]. To this end, we first separate off
the center-of-mass degrees of freedom and restrict ourselves
to states with vanishing relative orbital angular momentum.
For the 2BZR + 3BZR, 2BZR + 3BHC, and 2BZR + 3BRp

models with infinitely large two-body s-wave scattering length
as , the hyperradial and hyperangular degrees of freedom
separate [11,42]. The lowest eigenvalue of the hyperangular
Schrödinger equation is typically denoted by s0, where s0 ≈
1.006ı [11,12]. This eigenvalue enters into the hyperradial
Schrödinger equation with hyperradial Hamiltonian HR ,

HR = − �
2

2m

∂2

∂R2
+ �

2
(
s2

0 − 1/4
)

2mR2
+ V3B(R) (3)

(for notational simplicity, the three-body hyperradius is de-
noted by R throughout this section). If V3B(R) is equal to
zero, the eigenenergies of the Hamiltonian HR are not well
defined. To make the problem well-defined without explicitly
introducing a length scale, a boundary condition at R = 0,
which serves as a regulator and defines a scale, can be specified.
This is the model 2BZR + 3BZR. The energy spectrum of the
2BZR + 3BZR model Hamiltonian displays a perfect geomet-
ric series [11]. For an eigenstate with binding momentum κ

(n)
3

[the corresponding energy is (�κ
(n)
3 )2/m], there exists a tighter

and a looser bound state with binding momentum κ
(n−1)
3 =

exp(π/|s0|)κ (n)
3 and κ

(n+1)
3 = exp(−π/|s0|)κ (n)

3 , respectively.
Here exp(π/|s0|) is approximately equal to 22.6944. The
three-body spectrum for the 2BZR + 3BZR model is not
bounded from below; in our notation, this means that n

can take nonpositive values, i.e., n = . . . , − 2,−1,0,1,2, . . . .
There exists an infinity of three-body bound states and each
hyperradial wave function ψn(R) has infinitely many nodes.
The hyperradial wave functions of these states collapse if
scaled by the binding momentum κ

(n)
3 , i.e., (κ (n)

3 )1/2ψn(κ (n)
3 R)

is the same for all states.
We now consider finite-range three-body regulators. As

a first toy model, we consider a hard-core repulsive three-
body potential; i.e., we consider the model 2BZR + 3BHC
(see Table I). In this case, the hyperangular and hyperradial
parts separate as before and the Hamiltonian HR supports
a well-defined ground state with energy E

(1)
3 or binding

momentum κ
(1)
3 (in our notation, n = 1,2, . . . ). For the nth

state with binding momentum κ
(n)
3 , the hyperradial wave

function has n − 1 nodes. The circles in Fig. 2 show
the difference between the binding momentum ratios for the
model 2BZR + 3BHC and the model 2BZR + 3BZR. The
binding momentum ratio for the ground and first excited
states of the model 2BZR + 3BHC is approximately 22.7064.
The deviation from the model 2BZR + 3BZR is 0.0120,

0 1 2 3 4
n

10-10

10-8

10-6

10-4

10-2

κ 3(n
)  / 

κ 3(n
+1

)  - 
ex

p(
π 

/ |
s 0|)

FIG. 2. (Color online) Breaking of the scale invariance for the
three-boson system at unitarity with three-body hard-core regulator.
The circles show the difference between the binding momentum ratio
κ

(n)
3 /κ

(n+1)
3 of the nth and (n + 1)th states for the model 2BZR +

3BHC and the ratio exp(π/|s0|) = 22.6944 for the model 2BZR +
3BZR as a function of n. The solid line shows a fit to the data
points. The breaking of the scale invariance becomes weaker with
increasing n.

or 0.053%. As we go to excited states, the deviations
decrease exponentially. A log-linear fit of the deviations
yields κ

(n)
3 /κ

(n+1)
3 − exp(π/|s0|) ≈ exp(1.823 − 6.244n) (see

the solid line in Fig. 2). The overlap between the wave function
of the ground state of the model 2BZR + 3BHC and the
wave function of the model 2BZR + 3BZR with the same
binding momentum is 0.999 47; i.e., the inner region where
the wave function for the model 2BZR + 3BHC deviates from
the true Efimov wave function is insignificant. The three-body
hard-core potential breaks the scale-invariance and introduces
n-dependent energy spacings.

The discontinuity of the derivative of the wave function at
R = R0 makes the three-body hard-core regulator challenging
to treat numerically, at least by the path-integral Monte
Carlo (PIMC) technique employed in Sec. IV. Thus, we
consider three-body power law potentials, which approach the
hard-core potential for p → ∞. The circles in Fig. 3 show
the binding momentum ratios for the model 2BZR + 3BRp

as a function of p. Figures 3(a) and 3(b) show the binding
momentum ratios for the ground and first excited states, and
the first and second excited states, respectively. As expected,
the binding momentum ratios approach the value for the
model 2BZR + 3BHC (dashed lines) in the large p limit.
For comparison, the solid lines show the binding momentum
ratio for the model 2BZR + 3BZR. The deviations between
the binding momentum ratios for the 2BZR + 3BRp and
the 2BZR + 3BHC models are largest for p = 4. Similar
to the model 2BZR + 3BHC, the binding momentum ratios
for the model 2BZR + 3BRp approach the value exp(π/|s0|)
exponentially with increasing n.

The spacing of the momenta is not the only way to
characterize how universal the system is, i.e., how close a given
system is to the true Efimov scenario described by the model
2BZR + 3BZR. The structural properties provide additional
insights. Indeed, the structures of weakly bound three-body
systems with positive as have recently been measured [30,31].
We first look at the distribution of the angles θjkl between
each pair of position vectors, θjkl = arccos(r̂jk · r̂kl). The
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FIG. 3. (Color online) Binding momentum characteristics for the
three-boson system with three-body power law regulator at unitarity.
The circles show the ratio of the binding momentum of two
consecutive states for the model 2BZR + 3BRp as a function of p.
Panel (a) shows the binding momentum ratio for the ground and the
first excited states, while panel (b) shows the ratio for the first and the
second excited states. The solid and dashed lines show the binding
momentum ratio for the models 2BZR + 3BZR and 2BZR + 3BHC,
respectively.

distribution Ptot(θ ) considers all three angles of each triangle,
while the distribution Pmin(θ ) [Pmax(θ )] considers only the
smallest [largest] of the three angles of each triangle. The
normalizations are chosen such that

∫ π

0 Ptot(θ )dθ = 3 and∫ π

0 Pmin(θ )dθ = ∫ π

0 Pmax(θ )dθ = 1. For infinitely large as (as
considered throughout this section), these angular distributions
only depend on the hyperangles and not on the hyperradius.
Thus, they are the same for the models 2BZR + 3BZR,
2BZR + 3BHC, and 2BZR + 3BRp. The circles, triangles,
and squares in Fig. 4 show Ptot(θ ), Pmin(θ ), and Pmax(θ ),
respectively, for these models. Ptot(θ ) is approximately linear
and approaches a finite value for θ → 0. We are interested
in the angular distributions for two reasons. (i) For the
models 2BG, 2BLJ, 2B10-6, and 2B8-6, the hyperangular
and hyperradial degrees of freedom do not separate and the
difference between their angular distributions and those for the
two-body zero-range models provides valuable insights (see
Ref. [40]). (ii) For the N -body clusters, the angular distribu-
tions, which depend on both the hyperangles and the N -particle
hyperradius, can serve to monitor the three-body correlations.

Solid, dotted, and dashed lines in Fig. 4 show the angular
distributions Ptot(θ ), Pmin(θ ), and Pmax(θ ), respectively, of
the three-body ground state for the model 2BG. Compared
to that for the two-body zero-range models, the angular
distribution near θ = 0 for the finite-range model displays
distinctly different behavior. For the Gaussian model, the
probability of finding an angle of zero is zero and the angular
distribution peaks at around 0.17π or 31◦. For the zero-range

0 π/4 π/2 3π/4 π
θ

0

0.5

1

1.5

2

P(
θ)

FIG. 4. (Color online) Angular distributions for three identical
bosons at unitarity. The circles, triangles, and squares show the
angular distributions Ptot(θ ), Pmin(θ ), and Pmax(θ ) for the model
2BZR; these distributions are identical to those for the models
2BZR + 3BHC and 2BZR + 3BRp. The solid, dotted, and dashed
lines show the angular distributions Ptot(θ ), Pmin(θ ), and Pmax(θ ) for
the model 2BG.

model, the angular distribution peaks at 0 and Ptot(0) is finite.
This is because the zero-range boundary condition makes the
probability to find two particles at the same position finite.
A vanishing interparticle distance corresponds to a triangle in
which one of the three angles θjkl is zero. Since the angular
distributions for the models 2BZR + 3BZR and 2BG show
distinctly different features, one might expect that the binding
momentum ratios κ (1)/κ (2) for these two models also differ.
The value of κ

(1)
3 /κ

(2)
3 for the model 2BG is 22.983, which

differs by only 1.27% from that for the model 2BZR + 3BZR.
This indicates that it is insufficient to only evaluate the binding
momentum ratios to judge how universal the system is. We
note that the distribution P (θ ) for the ground state of the
N = 3 system with two-body Lennard-Jones interactions is
quite similar to that for the ground state of the N = 3 system
with two-body Gaussian interactions [40].

We now consider the radial density ρ(r) (r is measured
relative to the center of mass of the three-body system) for the
models 2BZR + 3BZR and 2BZR + 3BRp with p = 6. The
radial density ρ(r) is normalized such that 4π

∫ ∞
0 ρ(r)r2dr =

N and depends on the hyperradius and the hyperangles. The
dashed and solid lines in Fig. 5 show the radial density

0 0.2 0.4
κ3 r

0

500

1000

1500

2000

4π
ρ(

r)
 / 

κ 33

FIG. 5. (Color online) Radial density ρ(r) for three identical
bosons at unitarity (r is measured relative to the center of mass of
the three-body system). The dashed and solid lines show ρ(r) for the
models 2BZR + 3BZR and 2BZR + 3BRp with p = 6, respectively.
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ρ(r) for the models 2BZR + 3BZR and 2BZR + 3BRp with
p = 6, respectively. For the latter, the ground-state density
is shown. The radial densities are scaled by their respective
binding momentum κ3. The solid and dashed lines agree
well in the large-r region and differ notably in the small-r
region. The deviation in the small-r region comes from the
fact that the hyperradial density for the model 2BZR + 3BZR
decays much slower for small R than that for the model
2BZR + 3BRp. Note that even though the radial densities for
the two models differ by about a factor of two in the small-r
region, the difference between the integrated contributions is
small because the volume element contains an r2 factor.

III. N-BODY CLUSTERS AT UNITARITY: OVERVIEW
OF LITERATURE RESULTS

This section discusses various literature results for the
energy of weakly bound N -body droplets (N > 3) at unitarity.
The diamonds in Fig. 6(a) show the N -boson energy per par-
ticle EN/N for the model 2BG as a function of N [21,26,28].
The energy per particle increases approximately linearly with
N for N > 6 (for smaller N , some deviations from the linear
behavior exist). Based on the fact that the energy per particle,
and correspondingly the binding momentum, scale linearly
with N for the model 2BG, Gattobigio et al. [21] proposed
an analytical form for the N -boson system with two-body
zero-range interactions and fixed three-body parameter,

κN

κ3
= 1 +

(
κ4

κ3
− 1

)
(N − 3) (4)

[see the dashed line in Fig. 6(a)]. The ratio κ4/κ3 is not
taken from the ground-state calculations for the Gaussian two-
body interaction model, for which κ4/κ3 = √

5.86, but from
Deltuva’s calculations for highly excited four-body resonance
states. Deltuva finds the universal ratio κ4/κ3 = √

4.61 [17].
Gattobigio et al.’s expression, converted to the energy, exhibits
a leading order N2 and subleading order N dependence.

It should be noted that the ground-state energy of the Hamil-
tonian with pairwise Gaussian interactions scales differently
with N for N � 10 than that of Hamiltonian with pairwise
interactions with short-range repulsion. For interactions with
a repulsive core, it is well-established that the energy per
particle increases weaker than linear for N � 10 (see, e.g., the
literature on helium and tritium droplets [44,45]). Gattobigio
et al. [26] noted that Eq. (4) applies not only to systems
with zero-range interactions but also to systems with finite-
range interactions in the regime where E/N is approximately
proportional to N (e.g., to helium droplets with N � 10). In
this case, the ratio κ4/κ3 for the finite-range potential is taken
as input and the binding momentum for N > 4 is predicted.
We return to this discussion in Sec. V.

Independent evidence for the leading-order N dependence
of the energy per particle for the Hamiltonian with two-body
zero-range interactions comes from lattice calculations for
even N [43]. Assuming that the distribution of the two-
body correlator is exactly log normal, Nicholson deduced an
analytical expression for the energy per particle, EN/N =
(N/2 − 1)E4/4 [see the dotted line in Fig. 6(a)] [43]. To plot
this expression, we used Deltuva’s value of E4/E3 = 4.61. It
should be noted that the coefficients predicted by Gattobigio
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FIG. 6. (Color online) Energy per particle of N -boson clusters
at unitarity. (a) Summary of literature results. The dashed and
dotted lines show the analytical prediction by Gattobigio and
Kievsky [21] and Nicholson [43], respectively. The triangles show
the diffusion Monte Carlo (DMC) energies for a Hamiltonian with
two-body square-well interaction and repulsive three-body hard-core
regulator [23]. The diamonds show the energy for the model 2BG [28].
(b) Summary of our PIMC calculations. The circles and pluses are
for the model 2BZR + 3BRp with p = 4 and 8, respectively; the
error bars (not shown) are of the order of the symbol sizes. The
squares, diamonds, and triangles are for the model 2BZR + 3BRp

with p = 5, 6, and 7, respectively; the error bars (not shown) are
smaller than the symbol sizes. (c) Summary of our calculations for
two-body van der Waals models. The circles, crosses, and squares
show our DMC results for the models 2BLJ, 2B10-6, and 2B8-6,
respectively.

et al. and Nicholson for the leading order N dependence differ
by about a factor of 2.

A somewhat different N -dependence of the energy per
particle was observed in the numerical calculations by von
Stecher [see triangles in Fig. 6(a)] [23]. In fact, the idea to use a
three-body regulator, as in our model 2BZR + 3BRp, to make
the ground-state trimer large and Efimov-like was introduced
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in Ref. [23]. Von Stecher employed a model Hamiltonian with
two-body square-well potential with infinitely large two-body
s-wave scattering length and three-body hard-core potential.
For N � 10, the energy per particle increases approximately
linearly with increasing N . For larger N , the triangles in
Fig. 6(a) flatten. Reference [46] interpreted this as a turnover
to a N0 dependence of the energy per particle. Such a behavior
suggests a saturation of the density for large N . This saturation
would be a consequence of the balance of the two-body
attractive and three-body repulsive interactions.

The discussion above shows that the dependence of the
energies tied to Efimov trimers is not well understood.
Specifically, neither the functional form of the energy per
particle nor the coefficients are agreed upon. In the following
sections, we attempt to understand where the discrepancies of
the literature results come from.

IV. N-BODY RESULTS AT UNITARITY FOR
THE MODEL 2BZR + 3BR p

To calculate the N -boson energy for the Hamiltonian
with interaction model 2BZR + 3BRp, we apply the PIMC
technique [25,47]. The PIMC technique is an, in principle,
exact finite-temperature method; the errors, which originate
from the discretization of the imaginary time and the stochastic
evaluation of integrals, can be reduced systematically. To
obtain the ground-state energy of the N -boson Hamiltonian,
the PIMC approach has to be extended to the zero-temperature
limit. Typically, this is achieved by the path-integral ground-
state approach [47,48]. Here we pursue an alternative strategy.
Namely, we work in the finite-temperature regime where
the thermal contribution to the energy is known and where
the structural properties of interest are not affected by the
temperature. This approach was introduced and benchmarked
in Ref. [28]. The basic idea is to place the droplet in a weak
external harmonic confinement, whose angular frequency ω is
chosen such that the center-of-mass energy spectrum becomes
discretized and the relative motion is unaffected by the
trap. This requirement corresponds to |EN | � �ω. Since the
density of states of the harmonically trapped center-of-mass
pseudoparticle is known analytically, the ground-state energy
EN of the N -boson droplet in free space can be extracted from
the finite-temperature energy [25,28].

The circles, squares, diamonds, triangles, and pluses
in Fig. 6(b) show the energy per particle for the model
2BZR + 3BRp with p = 4, 5, 6, 7, and 8, respectively, as
a function of N (see also Table II and the Supplemental
Material [49]). For each p, the energy per particle is scaled
by the respective trimer energy per particle. For a fixed p,
the energy per particle increases monotonically and smoothly
as a function of N , i.e., even-odd effects, which have been
observed in trapped and homogeneous two-component Fermi
gases [50–52], are—if existent—smaller than our statistical
error bars. For fixed N , the scaled energy per particle increases
with increasing p (p � 4); this increase becomes smaller
with increasing p. Similarly to von Stecher’s energy per
particle [23] [triangles in Fig. 6(a)], the scaled energy per
particle increases roughly linearly for smallish N and then
flattens out for larger N . This effect is most pronounced for
p = 4 and 5, where the flattening sets in around N = 8–10,

TABLE II. PIMC energies for the model 2BZR + 3BRp for N =
4–15. Columns 2–4 show the scaled energy EN/N/(E3/3) for p =
5, 6, and 7, respectively. The error bars (not explicitly reported) are
around 3%.

N 2BZR + 3BR5 2BZR + 3BR6 2BZR + 3BR7

4 3.46 3.64 3.73
5 6.19 6.53 6.70
6 8.69 9.42 9.81
7 10.9 12.0 12.6
8 12.8 14.3 15.1
9 14.5 16.4 17.5
10 15.9 18.3 19.7
11 17.3 20.0 21.5
12 18.4 21.5 23.3
13 19.4 22.8 25.0
14 20.3 24.2 26.4
15 21.1 25.2 27.8

and least pronounced for p = 8. The reason for the flattening
is that the clusters develop, for sufficiently large N , more than
one pair distance scale (see below for more details).

The circles in Fig. 7 replot the PIMC energy per particle
for selected N . As the power p increases, the scaled energy
approaches a constant. Based on our discussion in Sec. II,
the p → ∞ energy should coincide with the energy for the
model 2BZR + 3BHC. It is thus instructive to compare our
scaled energies, extrapolated by eye to the p → ∞ limit, with
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FIG. 7. (Color online) Comparison of our PIMC energies (left)
and literature results (right) for selected N . Panels (a)–(c) show our
PIMC energy per particle for N -boson clusters interacting through
the model 2BZR + 3BRp as a function of p for N = 6,10, and
13, respectively. For comparison, panels (d)–(f) show the energy per
particle from the literature for the same N . The triangles, diamonds,
and squares are from von Stecher [23], Nicholson [43], and Gattobigio
et al. [21], respectively. Since the work by Nicholson is restricted to
even N , comparison for N = 13 cannot be made.
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TABLE III. Summary of the definitions of length scales. The van der Waals length LvdW is defined in Ref. [1]. Lp for p = 6 agrees with
LvdW if m is replaced by the reduced two-body mass m/2.

Length scale Definition Description

Lg r0 Characteristic length scale of the two-body Gaussian potential
LvdW (

√
mc6/�)1/2/2 Characteristic length scale of the two-body van der Waals potential

Lp [1/(p − 2)
√

2mCp/�]2/(p−2) Characteristic length scale of the three-body repulsive potential
L̄3 1/κ3 = �/

√
m|E3| Length scale set by the three-body binding energy

L̄N 1/κN = �/
√

m|EN | Length scale set by the N -body binding energy
l̄N �/

√
m|EN |/N = √

NL̄N Length scale set by the N -body binding energy per particle
r̄ Average interparticle spacing
R̄ Average sub-three-body hyperradius

those obtained by von Stecher [23], who employed a two-body
square-well potential and a three-body hard-core regulator [see
triangles in Figs. 7(d)–7(f)]. We find that our p → ∞ energy
per particle lies above von Stecher’s energy per particle by
something like 10%–20%, 20%–30%, and 30%–50% for N =
6, 10, and 13, respectively. Since the three-body sectors are
treated on consistent footing (3BRp → 3BHC as p → ∞),
we speculate that the difference arises from the different two-
body interactions. However, we did not perform calculations
to confirm this and thus cannot rule out other reasons. As can
be seen from Fig. 7, Nicholson’s energy prediction lies notably
below our large p energies, while Gattobigio et al.’s prediction
lies above our large p energies for N � 8.

If the N -body energies were determined solely by a three-
body parameter κ3, the model 2BZR + 3BRp for different
p would yield the same scaled energies; i.e., the symbols in
Fig. 6(b) would collapse to a single curve. The fact that they
do not collapse indicates that the three-body parameter is not
sufficient to predict the energy of the N -boson clusters, at
least not for the models considered. To gain more insight into
this, it is instructive to analyze the length scales of the model
2BZR + 3BRp. Four length scales can be identified (see rows
3–6 of Table III): (i) the characteristic length scale Lp of the
three-body repulsive potential, (ii) the length scale L̄3 defined
by the three-body binding energy, (iii) the length scale L̄N

defined by the energy of the cluster, and (iv) the length scale l̄N
associated with the energy per particle of the cluster. Inspection
of the definitions given in Table III shows that L̄N and l̄N are
not independent.

For p = 4–8, we find L̄3/Lp ≈ 29.3, 28.8, 27.6, 26.6,

and 25.9, i.e., the trimer is significantly larger than the
scale of the underlying repulsive three-body potential. This
ensures, as discussed in Sec. II, that the trimer ground state
described by the model 2BZR + 3BRp with p � 4 exhibits
the key characteristics of an Efimov state. It is instructive to
alternatively think about the trimer size in terms of the average
interparticle spacing r̄ . For trimers with p = 4–8, we find
r̄/Lp ≈ 18.7, 18.5, 17.7, 17.1, and 16.6.

For p = 6, we find that L̄N/Lp changes from 11.2 for N =
4 to 8.37 for N = 5 to 2.46 for N = 15. This suggests that the
N -boson droplet “sees” increasingly more of the three-body
regulator as N increases, i.e., that the dependence of EN/N on
p increases with increasing N . The length scale l̄N , in contrast,
suggests a larger separation of scales; for N = 13, e.g., we
have l̄N/Lp = 7.69 for p = 4 and l̄N/Lp = 6.85 for p = 8.
In fact, if EN/N scales as N , then L̄N and l̄N scale as 1/N and

1/
√

N , respectively. If EN/N scales as N0, then L̄N and l̄N
scale as 1/

√
N and N0, respectively. This implies that—unless

the energy scales linearly (or even weaker) with N for large
N—the properties of the N -boson droplets are expected to be
notably affected by the choice of the three-body regulator.

Alternatively, one can consider the average interparticle
distance r̄ and the average sub-three-body hyperradius R̄. The
squares in Fig. 8(a) show the average interparticle spacing r̄ ,
i.e., the expectation value of the pair distance, as a function
of N in units of 1/κ3 (left axis) and in units of L6 (right
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FIG. 8. (Color online) Expectation value r̄ of the pair distance
as a function of N for N -boson systems interacting through various
models. (a) The squares are for the model 2BZR + 3BRp with p = 6.
(b) The triangles are for the model 2BG. (c) The circles are for the
model 2BLJ. The error bars show the variance of the pair distance.
The pair distances are plotted using two different units: (i) the inverse
three-body binding momentum (left axis) and (ii) the characteristic
length scale of the model Hamiltonian (right axis).
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FIG. 9. (Color online) (a) Expectation value R̄ of the sub-three-
body hyperradius (triple size) as a function of N for N -boson systems
interacting through the model 2BZR + 3BR6. The error bars show the
variance of the triple size. (b) Triple distribution function Ptriple(R) for
the N = 13 cluster scaled using the three-body binding momentum
κ3. The solid lines from top to bottom at κ3R = 0.6 are for the model
2BZR + 3BRp with p = 4, 5, 6, 7, and 8. The inset replots the triple
distribution functions using the binding momentum κ13 of the N = 13
droplet. In these units, the triple distribution functions for different p

collapse.

axis) for the model 2BZR + 3BRp with p = 6. The error
bars indicate the variance 
r of the pair distance, 
r =√

〈r2〉 − 〈r〉2, where 〈 〉 indicates the quantum mechanical
expectation value [53]. As the number of particles N increases,
both the mean and the variance of the pair distance are nearly
constant. The mean and variance of the pair distance are about
one order of magnitude larger than the internal length scale Lp.
The relatively large variance of the Hamiltonian with model
interaction 2BZR + 3BRp implies that the clusters are diffuse
and liquidlike. The squares in Fig. 9(a) show the average
sub-three-body hyperradius R̄, i.e., the expectation value of
the triple size, as a function of N for the model 2BZR + 3BRp

with p = 6. The error bars indicate the variance. The mean and
variance of the sub-three-body hyperradius behave similar to
the mean and variance of the pair distance.

The average pair distance and sub-three-body hyperradius
are obtained by averaging over all possible pairs and triples
regardless of whether or not the particles are close to each other.
To get more “local” information, we calculate the maximum
density and subsequently the closest pair distance. The circles,
squares, and diamonds in Fig. 10(a) show the maximum
ρmax of the radial density for the model 2BZR + 3BRp with
p = 5, 6, and 7, respectively, as a function of N . We find

0

1×103

2×103

3×103

4π
ρ m

ax
 / 

κ 33

2 4 6 8 10 12 14 16
N

0.2

0.4

(ρ
m

ax
)-1

/3
κ 3

5

10

(ρ
m

ax
)-1

/3
 / 

L 6

(a)

(b)

FIG. 10. (Color online) (a) Maximum density ρmax as a function
of N for N -boson systems interacting through various models. The
circles, squares, and diamonds are for the model 2BZR + 3BRp with
p = 5 (lowest data set), 6, and 7 (highest data set), respectively. For
comparison, the line is for the model 2BG. (b) Same data as in (a) but
replotted as the minimum average interparticle distance (ρmax)−1/3.
The right axis shows the data for the model 2BZR + 3BR6 in units
of L6.

that unlike for N = 3 (see Fig. 5), the radial density peaks
at r = 0 for N � 4. For all p, the maximum of the radial
density is roughly a constant for the largest N considered.
This constant depends—as the energy per particle—on the
three-body regulator. The circles, squares, and diamonds in
Fig. 10(b) show the smallest average pair distance for the
model 2BZR + 3BRp with p = 5, 6, and 7, respectively, as
a function of N . The smallest average pair distance decreases
with increasing N and approximately saturates for the largest
N considered. The smallest average pair distance is only about
five times larger than the characteristic length scale Lp of the
three-body regulator.

The above length scale discussion can be expanded
by considering distribution functions. The scaled pair dis-
tribution function 4πr2Ppair(r), normalized according to
4π

∫ ∞
0 r2Ppair(r)dr = 1, tells one the probability to find two

particles at a distance r from each other. The lines from
top to bottom at κ3r = 0.8 in Fig. 11(a) show the scaled
pair distribution function 4πr2Ppair(r) for N = 13 interacting
through 2BZR + 3BRp with p = 4–8. The amplitude at r = 0
is finite and roughly independent of p. This makes sense as it
is a signature of the two-body zero-range interactions, which
enforce a finite amplitude at r = 0.

The triple distribution function Ptriple(R), normalized ac-
cording to

∫ ∞
0 Ptriple(R)dR = 1, tells one the probability to

find three particles with sub-three-body hyperradius R. The
solid lines from top to bottom at κ3R = 0.6 in Fig. 9(b)
show the triple distribution function Ptriple(R) for N = 13
interacting through 2BZR + 3BRp with p = 4–8. The triple
distribution functions are broad and structureless, indicating
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FIG. 11. (Color online) Scaled pair distribution function
4πr2Ppair(r) for N = 13 bosons interacting through various models.
(a) The solid lines from top to bottom at κ3r = 0.8 are for the model
2BZR + 3BRp with p = 4–8, scaled using the three-body binding
momentum κ3. The inset replots the pair distribution functions scaled
using the binding momentum κ13 of the N = 13 droplet. In these
units, the pair distribution functions for different p collapse. (b) The
dashed and dotted lines show the scaled distribution functions for the
models 2BLJ and 2BG, respectively, using the three-body binding
momentum κ3.

that the clusters are diffuse and liquidlike and that no small
three-body subsystems are formed.

Figures 9(b) and 11(a) show that the distribution functions
Ppair(r) and Ptriple(R) do not collapse if scaled by the three-
body binding momentum κ3. The distribution functions for
p = 4 are notably broader than those for p > 4. Figures 9(a)
and 11(a) suggest that the distribution functions converge in
the large-p limit (i.e., in the three-body hard-core regulator
limit). Similar behavior is observed for other N . As shown in
the insets of Figs. 9(b) and 11(a), the distribution functions
collapse to a very good approximation to a single curve
if scaled by the binding momentum κN of the N -body
droplet. This can be understood as a new type of universality,
which is weaker than the “Efimov universality”: The binding
momentum κN allows one to collapse the distribution functions
for the models 2BZR + 3BRp for sufficiently large p, but
κN is not determined by κ3 (the latter would constitute
“Efimov universality”). The dominance of κN arises because
the vast majority of the wave-function amplitude is located
in the classically forbidden region [54] (for pure zero-range
interactions, the classically allowed region is reduced to a
single point).

At the three-body level, the angular distribution functions
for the models 2BZR + 3BRp and 2BZR + 3BZR coincide
since the hyperradial and hyperangular degrees of freedom
separate. This is not the case for N > 3, since the three-body
regulator depends on the N -body hyperradius and a subset
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FIG. 12. (Color online) Angular distribution Ptot(θ ) for N -boson
clusters interacting through the model 2BZR + 3BRp with p = 6.
The lines from top to bottom at θ = 0 are for N = 5, 6, 7, 9, and 13.

of the 3N − 4 hyperangles. For fixed N , we find that the
dependence of the angular distribution functions Ptot(θ ) on the
power p of the three-body regulator is small [much smaller
than the dependence of Ppair(r) and Ptriple(R) on p]. Figure 12
shows the angular distribution function Ptot(θ ) for N -boson
clusters interacting through 2BZR + 3BR6 for various N . The
lines from top to bottom at θ = 0 are for N = 5, 6, 7, 9,

and 13. As the number of particles increases, the probability
of finding triangles with small angles decreases but remains
finite. Intuitively, this is because Ptot(θ ) accounts for all the
trimer configurations and not just the “closest trimers.”

Combining the information displayed in Figs. 6–12, the
key characteristics of the ground state of N -boson droplets
interacting through the model 2BZR + 3BRp with p � 4 can
be summarized as follows: (i) the dependence of the energy and
the structural properties on the three-body regulator decreases
with increasing p; (ii) the dependence of the energy and the
structural properties on the three-body regulator cannot be
explained by simple length scale arguments (the separation of
scales is largest for the p = 4 regulator and smallest for the
p = 8 regulator); (iii) the pair and triple distribution functions
collapse to a very good approximation to a single curve if
scaled by the binding momentum of the N -body system,
suggesting that 1/κN , and not 1/κ3, is the governing length
scale for N > 3.

V. RESULTS FOR OTHER INTERACTION MODELS

We now compare the findings for N -boson systems interact-
ing through the model 2BZR + 3BRp with p = 4–8 (see the
previous section) with those for N -boson systems interacting
through the models 2BG, 2BLJ, 2B10-6, and 2B8-6.

We start our discussion with the model 2BG, for which the
energy per particle scales, to a very good approximation, lin-
early with N for N � 6 [see diamonds in Fig. 6(a)]. The model
2BG has no repulsive core and is characterized by a single
length scale, the width r0. Using a simple variational Gaussian
product wave function in the single-particle coordinates, one
can readily show that the ground-state energy scales as N2 and
that the peak density increases quadratically with N . Indeed,
our calculations shown in Figs. 8(b) and 10 for up to N = 15
clearly support that the droplet shrinks with increasing N . As
can be seen in Fig. 8(b), the average interparticle distance
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TABLE IV. DMC energies for the Hamiltonian with two-body
van der Waals interactions for N = 4–15. Columns 2–4 show the
scaled energy EN/N/(E3/3) for the models 2BLJ, 2B10-6, and 2B8-
6, respectively. The error bars (not explicitly reported) are around 1%.

N 2BLJ 2B10-6 2B8-6

4 3.978 3.953 3.960
5 7.827 7.841 7.887
6 11.95 11.99 12.12
7 16.07 16.15 16.40
8 20.09 20.24 20.59
9 23.94 24.15 24.69
10 27.57 27.89 28.57
11 31.07 31.44 32.29
12 34.37 34.81 35.86
13 37.50 38.02 39.25
14 40.46 41.06 42.41
15 43.27 43.97 45.46

quickly decreases to a value smaller than r0. We conclude that
the N2 scaling of the energy for the model 2BG predominantly
reflects the absence of a repulsive core in the potential energy
and less so Efimov characteristics.

Next, we discuss the properties of the Hamiltonian inter-
acting through the van der Waals models 2BLJ, 2B10-6, and
2B8-6. Our calculations at unitarity are performed using the
same atomic mass and the same c6 coefficient for the three
models while the short-range coefficients are tuned such that
the dimer supports a single s-wave bound state with zero
energy. For the three-body system, we find κ3LvdW = 0.230
for the model 2BLJ, κ3LvdW = 0.233 for the model 2B10-6,
and κ3LvdW = 0.245 for the model 2B8-6, i.e., the three-
body binding momentum depends weakly on the short-range
scale of the two-body potential. The N -body energies per
particle, in units of the three-body energy per particle, are
summarized in Table IV. These energies are obtained by
the DMC approach [55]. Dividing the N -body energies by
the corresponding three-body energy, the energy per particle
curves for the three van der Waals interaction models nearly
collapse [see Fig. 6(c)]. This can be interpreted as van der
Waals universality in the N -body sector. Due to the repulsive
core, the energy per particle flattens around N = 10, indicating
that the system starts to grow outward, i.e., starts to form
a “second layer” (of course, the system is liquidlike and
individual layers cannot be identified). Consistent with this,
Fig. 8(c) shows that the average interparticle distance first
decreases with increasing N and then slowly increases for
N � 8.

The dashed line in Fig. 11(b) shows the pair distribution
function of the N = 13 system interacting through the model
2BLJ. The amplitude in the small r region is suppressed
compared to the other interaction models considered due to
the repulsive two-body core. Scaling r2Ppair(r) using κ13 (not
shown) does not bring the pair distribution function for the
model 2BLJ in agreement with the scaled pair distribution
functions shown in the inset of Fig. 11(a) for the model
2BZR + 3BRp with p = 4–8. This reflects the fact that a
notably smaller fraction of the wave function amplitude resides
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FIG. 13. (Color online) Assessing the applicability of Eq. (4) for
N -boson systems with two-body finite-range interactions at unitarity.
Circles and triangles show the normalized difference (κappr

N − κN )/κN

for the models 2BG and 2BLJ, respectively, as a function of the
number of particles N .

in the classically forbidden region for the model 2BLJ than for
the model 2BZR + 3BRp with p = 4–8.

As mentioned in Sec. III, Eq. (4) applies, according to
Ref. [26], not only to systems with zero-range interactions
but also to systems with finite-range two-body interactions.
To assess the applicability of Eq. (4), we denote the left-hand
side of Eq. (4) by κ

appr
N /κ3 and plot the normalized difference

between κ
appr
N /κ3 and the exact κN/κ3, as determined by our

calculations. Circles and triangles in Fig. 13 show the quantity
(κappr

N − κN )/κN for the models 2BG and 2BLJ, respectively.
For N = 3 and N = 4, the normalized difference is zero by
construction. For N > 4, the normalized difference is negative
for the model 2BG and positive for the model 2BLJ. The
deviations from the functional form proposed by Gattobigio
et al. increase roughly linearly with N for the model 2BLJ,
reaching 13% for N = 15, and nonlinearly for the model
2BG, reaching −20% for N = 15. Thus, if high-accuracy
predictions are sought, then Eq. (4) should be used with
caution.

VI. CONCLUSIONS

This paper studied weakly bound Bose droplets at unitarity.
These systems are obtained by adding one atom at a time
to an Efimov trimer or a weakly bound trimer with Efimov
characteristics. We carefully analyzed the three-body system
and then studied larger systems.

The three-body ground state of the Hamiltonian with
two-body zero-range interactions and repulsive three-body
potential (model 2BZR + 3BRp) is a nearly ideal Efimov
state. The premise was (see also Ref. [23]) that this would
allow us to determine the universal properties of droplets
tied to a three-body Efimov state by studying N -body ground
states. Somewhat surprisingly, we found dependencies of the
ground-state cluster properties on the three-body regulator,
suggesting that the ground states become less universal with
increasing N . This is a somewhat disappointing finding
as the treatment of N -body excited and resonance states,
which are expected to exhibit universal characteristics, is a
computationally much more demanding task. Yet, our study
revealed a different type of universality for these model
Hamiltonian. We found that if the lengths are scaled by
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the N -body binding momentum, then the dependence on
the three-body regulator diminishes notably. This suggests
that the ground states of these systems are halo states [54],
i.e., states whose amplitude is predominantly located in the
classically forbidden region. The N -body binding momentum
itself is, however, not—as it would be in the case of N -body
Efimov universality—determined by the three-body binding
momentum, especially not as N increases.

Hamiltonian with two-body van der Waals interaction at
unitarity were also investigated. It was found that the energy
per particle, if scaled by the three-body energy, collapses to a
very good approximation to a single curve, suggesting that the
short-range details of the van der Waals interaction impact the
three- and higher-body sectors in a similar manner (i.e., the
short-range details are, to a very good approximation, “taken
out” by scaling by the three-body energy). The calculations
presented were for Lennard-Jones and modified Lennard-
Jones potentials; the latter potentials have a −c6/r6 tail but
a softer repulsive core at small distances than typical van
der Waals interactions. We also performed calculations for
(i) the true helium-helium potential scaled by an overall
factor such that the s-wave scattering length is infinitely
large and (ii) the true helium-helium potential with modified
short-range potential such that the s-wave scattering length is
infinitely large (these models were labeled He-He(scale) and
He-He(arctan) in Ref. [40]). The energy per particle curves
for these systems, which have a more complicated long-range
tail, also collapse, to a very good approximation, to the same
curves as those for 2BLJ, 2B10-6, and 2B8-6 if scaled by the

three-body energy. The structural properties, specifically the
pair and triple distribution functions, for the van der Waals
systems do not collapse to the same curves as those for
the 2BZR + 3BRp model with p = 4–8 if scaled using the
N -body binding momentum κN , suggesting that a good portion
of the wave function amplitude of the van der Waals systems
is located in the classically allowed region.

In the future, it would be interesting to extend the calcula-
tions presented here to excited and resonance states. We expect
that the N -body properties become universal if sufficiently
high excitations are being considered. In the four-body sector,
e.g., Deltuva [17] extracted the universal numbers for κ4/κ3 by
going to high-lying resonance states (in this case, “high-lying”
means third or higher resonance states). Extending calculations
such as those conducted by Deltuva to N > 4 is, however,
challenging. It would also be interesting to extend the studies
presented in this paper to finite s-wave scattering lengths and
to Bose droplets with an impurity.
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