
PATH INTEGRAL MONTE CARLO STUDIES OF

ULTRACOLD FEW-ATOM SYSTEMS

By

YANGQIAN YAN

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
Department of Physics and Astronomy

MAY 2016

c©Copyright by YANGQIAN YAN, 2016
All Rights Reserved



c©Copyright by YANGQIAN YAN, 2016
All Rights Reserved



To the Faculty of Washington State University:

The members of the Committee appointed to examine the dissertation of

YANGQIAN YAN find it satisfactory and recommend that it be accepted.

Doerte Blume, Ph.D., Chair

Peter Engels, Ph.D.

Mark G. Kuzyk, Ph.D.

ii



Acknowledgement

I would like to express my special thanks to my advisor Professor Doerte Blume, who has

been selfless in dedicating so much of her time to her students. She is critical and insightful

to my research questions and patient with my writing. She always has a broad picture but

also pays attention to details in research, writing, and presentations. She provided me many

opportunities for attending conferences, workshops, and visiting other institutions. Her

advices on presentations and communications could not be more helpful. She has always

been thoughtful and I learned many different things other than physics. She also introduced

me to the beautiful world of GNU/LINUX, which is a great environment for everything. It

would be hard to imagine my daily life without it.

My gratitude also goes to our past and present group members: Kevin Daily, Debraj

Rakshit, Qingze Guan, and Jethin Jacob with whom I had many fruitful discussions, and

Seyed Ebrahim Gharashi and Xiangyu Yin, with whom I also shared close collaborations.

I would like to especially thank my past and present office mates Xiangyu Yin and Qingze

Guan. I bothered them with all kinds of questions and thoughts. They also dedicated a lot

of time helping me with my writing.

I also benefited a lot from the weekly journal club that we have been holding together

with Dr. Chuanwei Zhang’s group (now at UT Dallas), Dr. Peter Engels’s group, and Dr.

Michael Forbes’s group at Washington State University. My physics knowledge would have

been much narrower without it.

I want to thank my parents and friends, who have been understanding and supportive.

I wish to thank the staff at the department of physics and astronomy and the XSEDE

help desk. They have always been helpful and their responses have always been timely.

Lastly, I would like to acknowledge the financial support by the NSF through grant PHY-

1205443 and PHY-1415112. I have also benefited from the computational resources at WSU

iii



HPC and the XSEDE.

iv



PATH INTEGRAL MONTE CARLO STUDIES OF

ULTRACOLD FEW-ATOM SYSTEMS

Abstract

by Yangqian Yan, Ph.D.
Washington State University

May 2016

Chair: Doerte Blume

Motivated by the fact that ultracold atomic systems can nowadays be realized experi-

mentally with varying number of particles, this thesis explores the transition from few- to

many-body physics in ultracold matter via the path-integral Monte Carlo (PIMC) technique.

The PIMC approach, which accounts for the particle statistics and yields thermodynamic

observables, can be applied to both small and large systems.

We determine the energy, Tan’s contact, various structural properties, the superfluid

fraction and density, and the condensate fraction of small harmonically trapped bosonic

and fermionic systems as functions of the temperature and s-wave scattering length. We

find that the superfluid fraction of fermions is negative for certain parameter combinations

and develop a microscopic understanding of this, at first sight, surprising behavior. We

further illustrate that the superfluid fraction and condensate fraction are distinct quantities

by performing finite temperature two-body calculations.

A simple model that can be used to extract the ground state energy of N -boson droplets

from finite temperature calculations is proposed. This approach, combined with a novel two-

body zero-range propagator, is used to explore the generalized Efimov scenario at unitarity.

For three bosons, Efimov predicted the existence of an infinite series of geometrically spaced

v



bound states. Whether the N -boson energy is fully determined by three-body physics or

dependent on higher-body properties has long been debated in the literature. We find

that the N -body ground state energies display a notable model-dependence, suggesting that

corrections to Efimov universality become increasingly more important with increasing N .

For van der Waals systems, a weaker universality is found.

The equation of state (EOS) of spin-balanced equal-mass two-component Fermi gases

at unitarity has been determined in cold atom experiments. At high temperature or low

density, the virial expansion provides a good description of the EOS. While the second- and

third-order virial coefficients have been calculated theoretically and verified experimentally,

theory and experiment do not yet agree on the fourth-order virial coefficient. Our ab initio

determination of the fourth-order virial coefficient agrees with experiments, thereby settling

an ongoing debate in the literature.
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Chapter 1

Introduction

Helium-4 exists, at standard atmosphere and room temperature, in the form of a gas. As

the temperature T drops below 4K, it undergoes a first-order phase transition and forms

a (normal) liquid [12]. Similar to water, the viscosity of the helium normal fluid is finite.

However, as T drops below 2.17K, helium-4 undergoes a second-order phase transition to a

superfluid. The superfluid phase was discovered in 1938 through the observation of a sudden

drop of the viscosity [13, 14]. Other remarkable characteristics of a superfluid include the

existence of quantized vortices [15].

Superfluidity can be explained phenomenologically by Landau’s two fluid model [12], that

is, the system can be separated into two components: the normal fluid and the superfluid.

Each component has its own density and velocity. The normal fluid has a finite viscosity

and follows the classical hydrodynamic equation of motion while the superfluid component

has zero viscosity. The fraction of the superfluid component in the total system defines the

superfluid fraction ρs. Figure 1.1 shows the superfluid fraction of helium-4 under saturated

vapor pressure [5]. The superfluid fraction at zero temperature is 1, decreases as T increases,

and drops to 0 sharply at T = 2.17K.

The fermionic isotope helium-3 also exhibits a superfluid phase but at a much lower

temperature than the bosonic isotope helium-4, namely at 3mK [16–18]. Differences between
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Figure 1.1: The superfluid fraction ρs of liquid helium-4 under saturated vapor pressure as
a function of the temperature T . The data are taken from Ref. [5].

helium-3 and helium-4 isotopes exist in the mass and the particle statistics. The differences

between the two-body van der Waals interaction potentials for two helium-4 atoms and two

helium-3 atoms due to the relativistic corrections are too small to be responsible for the vastly

different transition temperatures. Since the difference in the atomic masses is only around

25%, the huge change of the transition temperature can be attributed to, at least primarily,

the particle statistics. The particle statistics becomes important when the temperature is so

low that the wave nature of the particles becomes important, i.e., the de Broglie wave length

λ becomes comparable to the interparticle spacing. Here λ is defined by

λ =
h√

3mkBT
, (1.1)

where kB and h are the Boltzmann constant and Planck’s constant, respectively. In the

language of path integrals, using the canonical ensemble, each particle is represented by a

path that is closed [19, 20]. The “size” spanned by each particle’s path is determined by λ.

When λ is comparable to the interparticle spacing, the paths of different particles overlap.

In this case, exchange effects can happen: The paths of two or more particles can “join

together” to form a larger loop. It can be shown that the superfluid fraction is proportional

to the thermal average of the square of the projected areas of the paths [19]. To have a

closed path with a large projected area, many particles must join together. This means that
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the appearance of superfluidity is related to the dominance of exchange effects.

To further illuminate the importance of the particle statistics, we first consider bosons.

The many-body wave function of N identical bosons is symmetric under the exchange of

any two bosons; note, the exchange refers to the exchange of the position vectors, the spin

degrees of freedom, and any other degrees of freedom needed to characterize the bosons.

It was predicted in the 1920s that non-interacting bosons undergo a transition at a critical

temperature Tc [21, 22]. Below the critical temperature, a large fraction of the bosons

occupies the same state. This phenomenon is termed Bose-Einstein condensation (BEC).

Gaseous helium-4 atoms in the metastable 23S1 state have been brought to BEC in 2001 [23,

24]. In the BEC phase, the de Broglie wavelength λ is larger than the interparticle spacing r̄.

At the critical temperature Tc = 4.7µK (this number is for a typical experimental realization

of gaseous helium-4), λ is about twice as large as the interparticle spacing r̄: λ ≈ 11, 000a0

and r̄ ≈ 5, 600a0. Here a0 denotes the Bohr radius. The s-wave scattering length, which

characterizes the strength of the interaction, is 141a0 for two helium atoms in the metastable

state [25]. This scattering length, as well as the range rvdW (rvdW ≈ 5.35a0 [4, 26]) of the

two-body van der Waals interaction [4, 27], are much smaller than the interparticle spacing r̄.

This implies that the system is very weakly-interacting (close to the non-interacting regime)

and that the condensate fraction, i.e., the fraction of atoms occupying the same state, is

almost 100% at the lowest temperature realized experimentally.

The behavior of gaseous metastable helium and liquid helium-4 is very different. At the

critical temperature of 2.17K, the de Broglie wavelength λ of atoms in liquid helium-4 is also

about twice as large as the interparticle spacing r̄: λ ≈ 16a0 r̄ ≈ 7a0 [5]. However, unlike in

the gaseous system, the van der Waals length rvdW of two liquid helium atoms in the ground

state (i.e., in the 11S0 state) is comparable to the interparticle spacing: rvdW ≈ 5.08a0 [4, 28]

and r̄ ≈ 7a0. Moreover, the interactions in liquid helium-4 are deemed strong since the

s-wave scattering length as, as ≈ 170a0 [28], is much larger than the interparticle spacing.
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Because of this strong interaction, the condensate is largely depleted and the condensate

fraction of liquid helium-4 is only around 10% even at zero temperature [12].

Formally, the condensate fraction is defined by the largest occupation number of all the

single-particle natural orbitals divided by the number of particles [29–31]. Following this

definition, only non-interacting systems at zero temperature have a condensate fraction of

1. If the interactions are turned on or the temperature is increased, the total wave function

of the system can, in general, no longer be written as a product of single-particle natural

orbitals. In general, to get the natural orbitals, one has to diagonalize the one-body density

matrix. The one-body density matrix ρ(r, r′) in position space reads

ρ(r, r′) =

∫
r2

. . .

∫
rN

ψ∗(r, r2, . . . , rN)ψ(r′, r2, . . . , rN)dr2 . . . drN , (1.2)

where ψ(r1, r2, . . . , rN) is the many-body wave function. The definition here applies to zero

temperature and can be generalized to finite temperature [19]. In terms of the field operators

ψ̂(r) and ψ̂†(r), which, respectively, destroy and create a particle at position r, the one-body

density matrix reads

ρ(r, r′) = 〈ψ̂†(r′)ψ̂(r)〉 , (1.3)

where 〈. . . 〉 indicates the average either over a state (at zero temperature) or a thermal

average of states (at finite temperature).

For homogeneous systems, the total momentum operator commutes with the Hamiltonian

if the Hamiltonian is translationally invariant. The one-body density matrix in momentum

space can be written as 〈â†k′ âk〉, where âk and â†k′ are the annihilation and creation operators

of a particle with momentum k and k′, respectively. It can be shown that the off-diagonal

terms with k 6= k′ are zero because of the momentum conservation. This means that the one-

body density matrix in momentum space is diagonal and that the natural orbitals are plane

wave states. Since the zero-momentum state has the lowest energy, the state with the largest
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occupation for homogeneous systems in thermal equilibrium is typically the zero-momentum

state.

The occupation of the zero-momentum state can alternatively be obtained from the

density matrix ρ(r, r′) in position space. Specifically, the condensate fraction of homogeneous

systems is proportional to lim|r−r′|→∞ ρ(r, r′). The above quantity is referred to as off-

diagonal long-range order (ODLRO). The term “off-diagonal” refers to the fact that r 6= r′

and the term “long range” refers to the fact that one looks at large separations. For trapped

systems, the total momentum operator does not commute with the Hamiltonian, implying

that the zero-momentum state is no longer the most occupied state; in fact, the one-body

density matrix in momentum space is, in general, not diagonal. Because of the trap, the

ODLRO is zero. The condensate fraction is, however, not necessarily zero. To obtain the

condensate fraction of inhomogeneous systems, one needs to diagonalize the one-body density

matrix. In general, this is much more challenging than considering the |r− r′| → ∞ limit.

As we discuss now, the low temperature behavior of fermions is very different from that

of bosons. Because of the Pauli exclusion principle, two identical fermions cannot occupy

the same state. It follows immediately that identical fermions cannot, at least not in the

traditional sense (see below), form a condensate. However, when fermions are brought

to low enough temperature, the de Broglie wave length λ can be much larger than the

interparticle spacing. As in the boson case, this is the regime where the quantum statistics

plays a dominant role. Fermionic matter for which λ & r̄ is termed degenerate Fermi gas

(DFG). For a single-component Fermi gas (assuming that spin flips are absent), two identical

fermions cannot occupy the same position. Thus, two-body s-wave contact interactions have

no impact on the system’s wave function. The simplest interaction that a single-component

Fermi gas “feels” is a p-wave interaction; while interesting, p-wave interactions will not be

discussed in this thesis. To realize s-wave interactions, one needs at least two components

(again, assuming that spin flips are absent).
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Let us consider a two-component Fermi gas with interspecies s-wave interactions [32].

For small and positive scattering length, two fermions in different hyperfine states can form

a dimer whose size is much smaller than the interparticle spacing. The dimer can thus be

treated as a composite boson. The dimers can undergo a transition to BEC, much like

bosons in a Bose gas. For small and negative scattering length, two fermions in different

hyperfine states do not form a weakly-bound state. Nevertheless, the two-body density

matrix shows non-vanishing ODLRO at sufficiently low temperature. Note, the one-body

density matrix does not show a non-vanishing ODLRO, indicating that the condensation

observed is associated with the formation of Cooper pairs [30, 32]. In both the as < 0 and

as > 0 cases, the two-component gas is superfluid at sufficiently low temperature.

The first experimental realization of atomic BECs and DFGs was achieved using bosonic

87Rb in 1995 [33] and using fermionic 40K in 1999 [34], respectively. The typical interparticle

spacings for the 87Rb atoms in the BEC were r̄ ≈ 14, 000a0 and those for the 40K atoms

in the DFG were r̄ ≈ 2, 000a0. Similar to the metastable helium gas experiments discussed

above, these average interparticle spacings are much larger than the van der Waals lengths,

rvdW ≈ 82.58a0 and 64.9a0 for 87Rb and 40K, respectively. Because of this separation of

scales, the interactions in ultracold atom experiments can typically be simulated by zero-

range potentials. In the low energy limit, the interaction potential is characterized by the

s-wave scattering length as [35],

as = − lim
k→0

tan(δs(k))

k
, (1.4)

where δs(k) is the s-wave phase shift. Here and in the following, we assume that the p-wave

interactions and higher partial wave interactions are negligibly small. It follows that many,

though not all, properties of cold atom gases are governed by the s-wave scattering length.

To introduce the concept of the zero-range potential, we consider the two-body problem

in free space. We assume that the two particles interact through a spherically symmetric
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interaction potential V (r) that falls off faster than 1/r3 at large interparticle distance r.

Both finite-range and zero-range potentials will be considered. We perform a partial wave

decomposition and focus on the s-wave channel. The relative scaled radial Hamiltonian Hr

for the s-wave channel reads

Hr =
−~2

2µm

∂2

∂r2
+ V (r), (1.5)

where µm is the reduced two-body mass. The solution for a given k, where k =
√

2µmE/~2

and E is the energy, is denoted by uk(r). Since the interaction potential is assumed to be

short-ranged, the asymptotic behavior of uk(r) at large r is determined by the kinetic energy

term. It can be written as uasym
k (r) = A sin(kr+ δs(k)), where A is a constant. By matching

uasym
k (r) and uk(r) at large r (i.e., in the regime where the potential can be neglected), we

determine the energy-dependent phase shift δs(k) for arbitrary k. Taking the k → 0 limit

[see Eq. (1.4)], we obtain the s-wave scattering length as.

As an example, we consider two particles interacting through a finite-range Gaussian

potential Vg(r) with range r0 and depth d,

Vg(r) = − ~2d

2µmr2
0

e
− r2

2r20 . (1.6)

Depending on the value of d (assuming r0 and µm are fixed), the potential supports 0, 1, 2,

. . . bound states. The thick lines in Fig. 1.2 show the interaction potential for three different

depths d as a function of r/r0. We numerically solve the scaled radial Schrödinger equation

for the zero-momentum scattering state u0(r). The thin lines in Fig. 1.2 show the result. In

the zero k limit, the asymptotic wave function can be simplified, using Eq. (1.4), to A(r−as).

The scattering lengths for the above potentials can be read off from the intersection of the

asymptotic large r behavior with the x-axis. The s-wave scattering lengths corresponding to

the potentials with d = 0.8, 1.342, and 1.7 are negative, infinite, and positive, respectively.

In the low-energy limit, the interaction potential V (r) can be characterized by the s-wave
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Figure 1.2: Illustration of the zero-momentum scattering solutions for finite-range and zero-
range interaction potentials. The thick dashed, solid, and dotted lines in panels (a), (b), and
(c) show the Gaussian interaction potential Vg(r) with d = 0.8, 1.342, and 1.7, respectively.
The thin dashed, solid, and dotted lines in panels (a), (b), and (c) show the corresponding
unnormalized zero-momentum scattering solutions u0(r). The circles, squares, and diamonds
in panels (a), (b), and (c) show the zero-momentum solution for the zero-range potentials
with the scattering length adjusted to be the same as those for the Gaussian potentials.
Note, the zero-momentum solutions for the zero-range potential and the Gaussian potential
coincide at large r.

8



scattering length. For many purposes, the true interaction potential can be replaced by the

zero-range pseudo potential 2π ~2
µm
asδ(r) ∂

∂r
r [3]. The two-body Schrödinger equation for this

zero-range potential can be solved analytically. In free space, there exists no bound state

when as < 0, a zero-energy bound state when as = ∞, and a single bound state when

as > 0. The zero-momentum scattering solution reads A(r − as), which is identical to the

asymptotic behavior of the scattering wave function for a finite-range potential with the

same s-wave scattering length. Instead of accumulating the phase shift up to a few times

of r0 —as is the case for a finite-range potential—, all the phase shift is, for the zero-range

potential, accumulated at r = 0, i.e., the asymptotic behavior extends to r = 0. The circles,

squares, and diamonds in Fig. 1.2 show the zero-momentum wave functions for the zero-

range potential for the same three scattering lengths as those for the Gaussian potential. In

the regime r . r0, the wave functions for the zero- and finite-range potentials differ. This

short-range regime corresponds to “high-energy physics”. In the regime r & r0, the wave

functions for the finite-range potential are reproduced accurately by the wave functions for

the zero-range pseudo potential. It is this large-r behavior of the two-body wave function

that determines, at least in a zeroth-order approximation, a number of characteristics of

ultracold gases. For the zero-range pseudo potential to provide a faithful description, all

length scales, including the interparticle spacing and the de Broglie wave length, must be

much larger than the range of the true interaction potential.

The only length scale provided by the zero-range potential is the s-wave scattering length

as. When as equals zero or diverges, there is no length scale associated with the two-body

interaction potential. In the absence of external forces, this means that the system is scale

invariant. A scale invariant Hamiltonian gives rise to scale invariant solutions, that is, an

eigen state can be scaled arbitrarily and still satisfy the Schrödinger equation. Scale invari-

ance is a powerful concept that has found applications in many areas of physics, including

the study of phase transitions [36] and fractals [37]. In cold atom physics, scale invariance in
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an essential ingredient for understanding anomalies of two-dimensional systems [38–40] and

Efimov physics in three spatial dimensions [41].

To introduce the concept of scale invariance, we consider a single particle in one dimension

in free space. The Hamiltonian is scale invariant because no length scale is provided. It

follows that the corresponding eigen states are also scale invariant. We now prove this. Let

the wave function ψ(x) be an eigen state of the Hamiltonian H(x),

H(x) = − ~2

2m

∂2

∂x2
, (1.7)

with eigen energy E, i.e.,

H(x)ψ(x) = Eψ(x). (1.8)

Replacing x by λsx in Eqs. (1.8) and (1.7), we have

H(λsx)ψ(λsx) = Eψ(λsx) (1.9)

and

H(λsx) = λ−2
s H(x); (1.10)

here λs is an arbitrary scaling factor. Substituting H(λsx), Eq. (1.10), into Eq. (1.9), we

have

H(x)ψ(λsx) = Eλ2
sψ(λsx). (1.11)

This means that if ψ(x) is an eigen state of H with eigen energy E, then ψ(λsx) is also an

eigen state of H with eigen energy Eλ2
s.

Non-interacting scale invariant systems are simple and solutions can be found in text-

books [42]. Non-trivial scale invariant systems are provided by three-dimensional Bose and

Fermi gases with zero-range interactions and infinite as (i.e., at unitarity). The unitary Bose

gas turns out to be unstable due to the Thomas collapse [43], which will be discussed in more

10



detail later. The unitary Fermi gas, in contrast, is stable since the Pauli exclusion principle

plays the role of a repulsive force that prevents the system from collapsing. Homogeneous

ultracold Fermi gases at unitarity thus provide an ideal experimentally realizable system

with which to explore the implications of scale invariance.

An important aspect of ultracold atoms is that the s-wave scattering length, in many

cases, can be tuned via a Feshbach resonance [4]. This allows one to realize the scale invariant

regimes discussed above. In addition, the use of Feshbach resonances allows one to explore

the entire regime of interaction strengths, from weakly-interacting to strongly-interacting,

both effectively repulsive and effectively attractive. For broad s-wave Feshbach resonances,

a single-channel model describes the physics very well and many aspects of ultracold gases

have been explained using single-channel zero-range models. Zero-range interactions have

also been used to model nuclear [44, 45], atomic and atom-laser interactions [46–48].

Tan’s contact plays a central role in systems with zero-range interactions [49–51]. Ob-

servables such as energies, radio-frequency spectra, and pair and momentum distributions

are related through one single quantity, i.e., the contact (for short-range potentials, Tan’s

relations still hold approximately). The contact has been measured experimentally [52–56]

and calculated theoretically [57–67] for various cold atom systems. Recently, the concept of

the contact has been generalized to nuclei [68, 69].

The BECs and DFGs routinely generated in experiments typically consist of tens of

thousands of atoms, i.e., they are many-body systems. Despite of the large number of atoms

in these systems, a good number of properties are determined by the interactions of just two

or three particles. Intuitively, this can be understood by realizing that typical BECs and

DFGs are very dilute, implying that the likelihood of finding more than a few particles within

another particle’s interaction range is very small. In the following, we discuss a number of

examples that highlight the connections between few-body and many-body physics from

different perspectives. In addition, we discuss a number of few-body phenomena that can
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Figure 1.3: Illustration of a three-body recombination process.

be studied using cold atoms.

Atom losses in and stability of Bose and Fermi gases: As already mentioned, the unitary

Bose gas is unstable while the unitary Fermi gas is stable. This unstable versus stable

behavior is due to the different behavior of the respective three-body systems. In ultracold

atomic experiments, atoms leave the trap if they have too much energy or if they form

dimers, trimers, . . . that are not trapped. The formation of a bound dimer requires the

presence of a third atom. Two particles cannot form a bound dimer in the absence of a third

particle, since the binding energy gained has to be turned into kinetic energy. Without a

third particle, this would violate momentum conservation. Thus, the main loss mechanism

is three-body recombination (see Fig. 1.3). For three bosons, e.g., two form a bound dimer,

the dimer and the third particle carry the same kinetic energy, and fly out of the trap in

opposite directions. Intuitively, the three-body loss rate increases as |as| increases. It is

found that the three-body loss rate scales as |as|4 [70]. The many-boson system suffers from

three-body losses if |as| is large, rendering it challenging to create degenerate unitary Bose

gases in thermal equilibrium. For equal-mass two-component Fermi gas, the situation is

different due to the Pauli exclusion principle. In this case, three fermions cannot occupy the

same spatial position, suppressing three-body losses. It is found that the three-body loss

rate scales as a6
s for as > 0 and |as|2.455 for as < 0 [71, 72]. As a result, the atom loss is

such that large samples of fermionic atoms in two spin states can be created. A question

that occupied researches for quite a while is then whether the fermionic atoms undergo a

Bosenova-like collapse or form a stable gas. It is now understood that two-component Fermi
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gas at unitarity are stable [32, 73]. Multi-component Fermi gas, in contrast, have been

predicted to undergo a Bosenova-type collapse [74].

Three-body Efimov effect: For two-body zero-range potentials, the three-body problem

has been solved using the hyperspherical coordinate approach [41, 75, 76], which divides

the coordinates into 5 hyperangles and 1 hyperradius R. The hyperangular and hyperradial

degrees of freedom separate for as = 0 and as = ∞. In these two cases, the hyperradial

Hamiltonian HR reads

HR =
−~2

2mR

∂2

∂R2
+

~2(s2
0 − 1/4)

2mRR2
, (1.12)

where mR is a conveniently chosen mass scale and s0 is the eigen value of the differential

equations for the hyperangles. Replacing R by λsR, one finds that HR(λsR) = λ−2
s HR. This

means, following our earlier discussion, that HR is scale invariant. Because λs can take any

value, the scale invariance is continuous. For three identical bosons, s0 is approximately

equal to the imaginary number 1.006ı. This means that the 1/R2 attraction is so strong

that the Hamiltonian HR supports bound states with infinitely negative eigen energy. This,

in turn, means that the energy spectrum is not bounded from below, which is unphysical.

A short-range three-body regulator in the hyperradius is needed to prevent the formation of

bound states with infinitely negative energies and to set the scale of the energy spectrum.

In ultracold atomic systems, the three-body regulator is effectively implemented by the two-

body van der Waals length [77, 78]. The van der Waals length sets a short-range length

scale and cuts off the three-body energy spectrum. The short-range regulator breaks the

continuous scale invariance at unitarity. If a zero-range boundary condition in the hyperra-

dius is used as the short-range three-body regulator, then the three-body system possesses a

discrete scale invariance. That is, to satisfy the zero-range boundary condition, the scaling

factor λs can only take specific values. The binding momenta κ of the bound states form

an infinite geometric series. The ratios between two binding momenta corresponding to two

consecutive states is around 22.7. It can be shown [41] that, even though the scale invari-
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ance is broken for finite as, the energy spectrum as a function of 1/as is fully determined

by the s-wave scattering length and the three-body parameter introduced by the zero-range

boundary condition in the hyperradius. Specifically, the spectrum follows Efimov’s radial

scaling law [41].

Three bosons with negative as can form a three-body bound state even though the two-

body subsystems are not bound. This is frequently depicted symbolically by three Borromean

rings. The scattering lengths at which the zero-energy three-body bound states appear are

denoted by a−. The a− also form a geometric series, with the ratio between consecutive a−

being 22.7, i.e., the same as the binding momentum ratios at unitarity. When the scattering

length is equal to a−, three free atoms with zero kinetic energy can couple to the zero-energy

Efimov trimer, which opens up a rapid decay path into deeply bound dimer states [79]. Thus

the three-body loss is resonantly enhanced. This enhanced three-body loss has been observed

in ultracold atomic gas experiments. In fact, the measurement of the scattering lengths at

which enhanced losses occur on the negative scatering length side is the first experimental

evidence of the existence of Efimov trimer states [80].

Extended Efimov scenario: No true Efimov effect exists for four or more bosonic parti-

cles [81]. That is, there exists no infinite series of N -body bound states in the vicinity of a

scattering length at which a zero-energy (N − 1)-body bound state exists. Nevertheless, the

three-body Efimov scenario has been generalized to more than three particles. The N -body

bound states have been found to be universal and fully determined by three-body physics,

i.e, a four-body parameter is found to be unnecessary [41, 82, 83]. Two four-body states are

attached to each Efimov trimer with fixed ratio of energies. Specifically, for each a− in the

three-body energy spectrum, there exist two scattering lengths at which four-body bound

states emerge. At these scattering lengths, the loss rates are enhanced. The experimentally

determined four-body loss enhancement positions [84] agree with the results from numerical

four-body calculations [85]. Similarly, one can also find N -body bound states attached to
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Figure 1.4: Illustration of the cluster expansion. The filled circles show the atoms in an
ultracold gas. The two-body, three-body, and four-body subsystems are illustrated by solid,
dotted, and dashed circles.

three-body trimer states. The measured five-body loss enhancement rate agrees qualita-

tively with the theoretical prediction based on five-body calculations [86]. Since five-body

events are much rarer than three- and four-body events, the current experimental precision

is unfortunately not good enough to determine the scattering lengths at which the five-body

Borromean states occur accurately.

Unitary Fermi gas and cluster expansion: While the behavior of the unitary Bose gas at

zero temperature depends on the three-body parameter, that of the unitary two-component

Fermi gas does not. At finite temperature, the only energy scales of the unitary two-

component Fermi gas are the chemical potential µ and the thermal energy kBT . This means

that the thermodynamic properties depend only on the ratio µ/(kBT ).

At high temperature, the grand canonical thermodynamic potential Ω can be expanded

in terms of the fugacity z = exp[−µ/(kBT )]. This approach is known as cluster expan-

sion [87–89]. The n-th expansion coefficient, i.e., the n-th order virial coefficient bn, can

be determined by the partition functions of clusters with n or fewer particles. Figure 1.4

schematically illustrates the cluster expansion. The grand canonical thermodynamic poten-

tial Ω at high temperature and low density can be described perturbatively through the virial

coefficients even though the two-body interaction is infinitely strong. To leading order, Ω

can be approximately described by the non-interacting system. The second-order virial coef-
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Figure 1.5: Superfluid fraction ρs of two identical bosons with zero-range interaction at
unitarity in a harmonic trap with trapping frequency ω as a function of the temperature
kBT/(~ω).

ficient, calculated by studying two-body physics, gives rise to the first-order correction to Ω

(illustrated by the solid circle in Fig. 1.4). Studying n-body systems thus provides (n− 1)th

order corrections. From Ω, thermodynamic properties such as the pressure and the density

can be determined. Virial coefficients, which can be calculated from the properties of few-

body Hamiltonian, are thus crucial for our understanding of the many-body unitary Fermi

gas in the normal phase (i.e., at temperatures above the transition temperature). Moreover,

precision measurements in table-top ultracold atomic experiments can provide insights into

the thermal properties of neutron stars.

Smeared out phase transitions: Phase transitions exist, strictly speaking, only in the ther-

modynamic limit, i.e., in the infinite number of particles limit. Sharp phase transitions do not

exist in few-body systems. Instead, observables change smoothly with the temperature. Of-

ten times, though, finite-N systems exhibit remnants of phase transitions, so-called smeared

out phase transitions. Figure 1.5 illustrates a smeared out phase transition. The solid line

shows the superfluid fraction ρs of two bosons with zero-range interaction at unitarity in a

harmonic trap with trapping frequency ω as a function of the temperature kBT/(~ω). Unlike

the superfluid fraction for bulk helium (see Fig. 1.1), the superfluid fraction of the two-boson

system varies smoothly as a function of the temperature. By studying the dependence on the

number of particles, few-body results can provide estimates of the transition temperature
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and insights into the nature of the phase transition of the corresponding many-body system.

As will hopefully become clear throughout this thesis, few-body systems are also inter-

esting in their own right. Experimentally, few-body systems in one dimension have been

prepared with high fidelity [90–93]. Few-body systems are also interesting with a view point

towards applications. For example, carefully designed few-body systems have the potential

to serve as a platform for quantum computing.

The continuous-space path integral Monte Carlo (PIMC) algorithm has been widely used

to determine thermodynamic properties of bulk helium [19], pristine and doped droplets [94,

95], nanotubes [96], and other systems. The PIMC technique is capable of treating the

canonical ensemble of particles with Bose or Fermi statistics. The canonical ensemble im-

plies finite temperature and fixed number of particles. Thus, the PIMC technique can bridge

our understanding of the quantum behavior at zero temperature and the classical behavior

at high temperature. One of the strengths of the PIMC algorithm is that it can be used to

treat few-body systems and many-body systems, therefore providing a consistent framework

for studying the transition between the two. The PIMC approach can treat bosonic systems

with large number of particles because the complexity scales polynomially with the number

of particles [19]. For fermions, in contrast, the applicability of the PIMC approach is com-

plicated by the Fermi sign problem [97–99]. The complexity for fermionic systems scales at

least exponentially with the number of particles. Other close variants of the PIMC technique

used in this work include the path integral ground state approach (PIGS) [100, 101], which

treat systems at zero temperature, and the path integral Monte Carlo worm algorithm, which

can treat the canonical and grand canonical ensemble [102].

The PIMC technique has not been applied very much to cold atom systems, even

though other variants of Monte Carlo methods [103] such as continuous-time lattice Monte

Carlo [104], diagrammatic Monte Carlo [105, 106], and diffusion Monte Carlo [32, 107] have

been applied fairly extensively. Continuous-space PIMC studies of cold atom systems are
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challenging because of the short-range nature of the atom-atom interaction. The algorithm

has to discretize the imaginary time so fine that both the interaction potential and the

physics that occurs on the trap scale can be resolved. To realize large s-wave scattering

lengths using two-body short-range interactions, one must consider length scales that are

largely separated, which complicates the problem. A possible way around this is the use of

zero-range interactions. In three spatial dimensions, the δ-function potential introduces a

singularity, which prohibits the “direct” use of this type of potential in position space imple-

mentations. As discussed in Chapter 6, this problem can be solved by using the zero-range

propagator, which incorporates the potential directly.

This thesis used the PIMC approach to investigate both zero and finite temperature prop-

erties of few-body systems. We determined the energy, contact, pair distribution function,

superfluid and condensate fractions, and other properties as a function of the temperature

for various systems and elucidated the role of the particle statistics. A negative superfluid

fraction for imbalanced few-fermion systems at low temperature was found for certain scat-

tering lengths. A scheme to incorporate zero-range interactions into PIMC simulations was

developed. Using this scheme, we treated the unitary Bose gas with two-body zero-range

interactions and three-body repulsive interactions. The energy and the structural properties

of the N -boson ground states were determined. The structural properties for various N

were found to be linked universally if a scaling that uses the N -body energy was employed.

We also treated four fermions at unitarity and determined the fourth-order virial coefficient.

Ours is the first numerical calculation that agrees with experimental results.

The remainder of this thesis is organized as follows. Chapter 2 introduces the PIMC

algorithm and illustrates its workings through example applications to ultracold few-atom

systems. During the course of my Ph.D., I developed the PIMC code used to generate the

PIMC results presented in Chapters 3-8 from scratch. The code was parallelized so that it

could be run on computer clusters. Chapter 2 introduces some of the basic ideas behind
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the PIMC algorithm, which samples the partition function of the system of interest. Several

approximations to the partition function are introduced. The “moves” utilized to sample

the partition function are explained. “Estimators” for the energy, structural distribution

functions, and the superfluid fraction are discussed.

Chapter 3 contains the manuscript that has been published in Physical Review A [“Har-

monically trapped Fermi gas: Temperature dependence of the Tan contact”, Y. Yan and

D. Blume, Phys. Rev. A 88, 023616 (2013)]. This chapter considers trapped unitary two-

component Fermi gases with short-range interactions. We employ the PIMC and explicitly

correlated Gaussian (ECG) algorithms. The Tan contact is determined for up to four parti-

cles as a function of temperature. A cluster expansion for the few-body system that provides

an accurate description of the Tan contact in the high temperature regime is developed. In

this work, I performed the PIMC calculations and Blume performed the ECG calculations.

Both Yan and Blume contributed to the writing of the first draft of the manuscript.

Chapter 4 contains the manuscript that has been published in Physical Review Letters

[“Abnormal Superfluid Fraction of Harmonically Trapped Few-Fermion Systems”, Y. Yan

and D. Blume, Phys. Rev. Lett. 112, 235301 (2014)]. We consider a trapped two-component

Fermi gas and determine the superfluid fraction and density for up to four fermions as a

function of the temperature and scattering length. We find a negative superfluid fraction

and density for certain parameter combinations. The calculations for systems with up to

three particles are performed using zero-range interactions and by explicitly summing over

all eigen states. The results for the four-body system are obtained using the PIMC approach

at high temperature and the ECG approach at low temperature. In this work, I performed

the PIMC calculations, analyzed all the raw data, and wrote the first draft of the manuscript.

Blume performed the ECG calculation.

Chapter 5 contains the manuscript that has been published in Physical Review A [“Tem-

perature dependence of small harmonically trapped atom systems with Bose, Fermi, and
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Boltzmann statistics”, Y. Yan and D. Blume, Phys. Rev. A 90, 013620 (2014)]. One focus

of this paper is on a comparative study of systems with different particle statistics. We deter-

mine the condensate fraction, superfluid fraction and superfluid density as a function of the

temperature and scattering length for two atoms with zero-range interaction. We present the

energies, structural properties, and superfluid fraction as a function of the temperature for

trapped particles with Bose and Fermi statistics interacting via short-range potentials. The

role of the particle statistics is analyzed carefully. Finally, we study the trapped N -boson

system with Gaussian interactions and introduce a simple model that describes the transi-

tion from the ground liquid-like state to the “gas-like” state. In this work, Blume provided

the ECG energies. I performed all other calculations, analyzed all the results, and wrote the

first draft of the manuscript.

Chapter 6 contains the manuscript that has been published in Physical Review A [“Incor-

porating exact two-body propagators for zero-range interactions into N -body Monte Carlo

simulations”, Y. Yan and D. Blume, Phys. Rev. A 91, 043607 (2015)]. We develop a

general scheme to incorporate zero-range interactions into PIMC simulations and provide

several benchmark tests. In this work, I performed all the calculations and wrote the first

draft of the manuscript.

Chapter 7 contains the manuscript that has been published in Physical Review A [“En-

ergy and structural properties of N -boson clusters attached to three-body Efimov states:

Two-body zero-range interactions and the role of the three-body regulator”, Y. Yan and

D. Blume, Phys. Rev. A 92, 033626 (2015)]. Using the scheme developed in Chapter 6,

we study the energy and structural properties of the ground state of N -boson clusters with

two-body zero-range interactions and three-body repulsive interactions. The N -body energy

is found to be not universally (at least not fully) determined by the three-body parameter.

Instead, we find that the structural properties can be linked universally if a scaling that uses

the N -body energy was employed. For comparison, we consider systems with two-body van
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der Waals interactions without a three-body regulator. The ground state of the N -body

clusters is found to be fairly universal for the interactions considered. In this work, Blume

performed the calculation for the systems with van der Waals interactions. I performed all

other calculations and wrote the first draft of the manuscript.

Chapter 8 contains the manuscript entitled “Path integral Monte Carlo determination

of the fourth-order virial coefficient for unitary two-component Fermi gas with zero-range

interactions” (Y. Yan and D. Blume, arXiv:1602.02328). Using the zero-range propagator

developed in Chapter 6 together with an “on-the-fly antisymmetrization” scheme, we develop

a general PIMC framework for treating fermions with zero-range interactions. Utilizing this

customized PIMC approach, we study the unitary four-fermion system. Specifically, we

determine the fourth-order virial coefficient. In this work, I performed all the calculations

and wrote the first draft of the manuscript.

Finally, Chapter 9 concludes and provides an outlook.
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Chapter 2

Path integral Monte Carlo method

2.1 Introduction

This chapter discusses the path integral Monte Carlo (PIMC) method [19]. The PIMC ap-

proach is a finite temperature method that can connect classical statistical mechanics, which

considers point-like particles in thermal equilibrium, and quantum mechanics, which consid-

ers zero-temperature wave functions. It is an ab initio method, which, in principle, does not

employ approximations. The PIMC method can be used to calculate many thermodynamic

properties of systems with bosonic, fermionic or mixed particle statistics. The concept of

path integrals goes back to Richard Feynman, who successfully used them to interpret the

wave nature of particles and to explain the double-slit experiment [108]. The path inte-

gral formalism provides an alternative to the Schrödinger equation and connects classical

and quantum mechanics in an intuitive manner. Since most readers are familiar with the

Schrödinger equation, we base our derivations on the Schrödinger equation and statistical

mechanics.

Since the PIMC approach is based on stochastic sampling, the statistical error of ob-

servables calculated by the PIMC approach can be controlled by adjusting the length of the

simulation. To achieve small statistical error bars for “complicated” systems, e.g., strongly
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correlated systems, long simulation times are oftentimes needed. One advantage of Monte

Carlo techniques is that simultaneous simulations can be run on separate computers with es-

sentially no communication. In parallel computing, this feature is known as “embarrassingly

parallel” or “perfectly parallel”. As a result, different models of parallel computing such as

MapReduce (divide the work in a predefined manner to different “workers” and combine at

the end) and Scatter/Gather (one “master” continuously distributes work to “slaves”) can

be applied on a variety of architectures of computer resources, including clusters (equally

fast computers on the same network) and distributed computing resources (computers with

varying speed on different networks). The simulations presented in this thesis were mainly

run on computer clusters. We use the model of MapReduce and, specifically, primarily the

Reduce function defined in Message Passing Interface.

The remainder of the chapter is organized as follows. Section 2.2 discusses the general

scheme of the PIMC approach. Section 2.3 discusses approximations to the partition func-

tion, which plays a key role in PIMC simulations. Section 2.4 discusses how to deal with the

exchange statistics if identical particles are present. Section 2.5 lists a number of methods

to sample the partition function. Last, Sec. 2.6 discusses selected estimators that are used

to extract thermodynamic properties from the sampled paths.

2.2 General scheme

We considerN interacting particles under external confinement described by the Hamiltonian

Ĥ at finite temperature T . We define the “inverse temperature” β, β = 1/(kBT ), which has

the unit of inverse energy. We work in position space, where the interaction potential and

external potentials are local (i.e., potentials that only depend on the position vectors and not

on the momentum vectors as would be the case if spin-orbit coupling terms were present).

The kinetic energy, however, is non-local (see below). The position vector for the j-th

particle is denoted by rj and we collectively denote the positions of all the particles by R,
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R = {r1, r2, . . . , rN}. A key quantity that describes the system under study at temperature

T is the density matrix operator ρ̂, ρ̂ = exp(−βĤ) [87]. In position space, the density matrix

operator reads

ρ(R,R′; β) =
〈
R
∣∣∣ exp(−βĤ)

∣∣∣R′〉 . (2.1)

We refer to the representation of the density matrix operator in position space as density

matrix. The diagonal term ρ(R,R; β) of the density matrix gives the non-normalized prob-

ability to find the particles in 3N -dimensional space, i.e., at R. The off-diagonal terms

ρ(R,R′; β) with R 6= R′ give the coherences, i.e., higher-order spatial correlations of the

system. Intuitively, if the Hamiltonian contains only simple R-dependent potential terms

V (R) and no kinetic energy terms, then the density matrix in position space will be diagonal

because the position vector R commutes with the Hamiltonian,

〈R| exp(−βV̂ )|R′〉 = exp (−βV (R)) δ(R−R′). (2.2)

Thus, the off-diagonal terms are introduced by the kinetic energy; for now, we exclude the

possibility of zero-range interactions, which cannot be expressed as a simple function of R.

Using Schrödinger quantum mechanics, the density matrix can be obtained by inserting the

identity ∑
n

|ψn〉 〈ψn| = 1̂, (2.3)

where {ψ1, ψ2, . . . } is a complete set of eigen states of the Hamiltonian Ĥ and 1̂ the unit

operator, into Eq. (2.1),

ρ(R,R′; β) =
∑
n

ψ∗n(R) exp(−βEn)ψn(R′), (2.4)

where En is the eigen energy associated with state ψn.
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The trace of the density matrix operator gives the partition function Z [87],

Z = Tr exp(−βĤ) =

∫
R

ρ(R,R; β)dR, (2.5)

where the integration goes over all 3N Cartesian coordinates. The partition function is a key

quantity in many thermodynamic relations. For example, the thermodynamic expectation

value of the Hamiltonian Ĥ, the energy E, can be written as [19]

〈E〉 = −∂ lnZ

∂β
= −Z−1∂Z

∂β
(2.6)

and the heat capacity Cv is defined through [19]

Cv =
∂〈E〉
∂T

=
1

kBT 2

∂2 lnZ

∂β2
. (2.7)

Since Eqs. (2.6) and (2.7) are derived from thermodynamic relations, they are referred to as

thermodynamic estimator relations. Moreover, the partition function Z serves as a normal-

ization constant, i.e., the probability to find the system in state ψn is given by exp(−βEn)/Z.

Using Z as a normalization constant, the thermal expectation value for a general operator

Ô can be written as [87]

〈O〉 =
Tr(e−βĤÔ)

Z
. (2.8)

Since this is derived from quantum mechanics, we refer to Eq. (2.8) as quantum estimator

relation.

In PIMC simulations, one samples the density matrix and extracts observables either

through thermodynamic estimator relations [such as those given in Eqs. (2.6) and (2.7)] or

through quantum estimator relations [Eq. (2.8)]. In practice, the problem is two-fold: (i)

In general, we do not know the density matrix and we have to develop an approximate

expression that has a controlled accuracy. (ii) We have to come up with an efficient scheme
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to sample the density matrix, i.e., to visit different configurations with a probability that is

proportional to the density matrix. Aspects (i) and (ii) will be addressed in Secs. 2.3 and

2.5, respectively.

One might wonder why we choose to work with the inverse temperature β instead of

the temperature T in our discussion above. The answer is two-fold. i) The density matrix

operator ρ̂, ρ̂ = exp(−βĤ), can be Taylor expanded around β = 0, i.e., β can be treated

as a small parameter. This suggests that one might be able to obtain an approximate, yet

accurate, description of the density matrix at small β or large temperature. Indeed, different

schemes to approximate the high-temperature density matrix will be discussed in Sec. 2.3. ii)

The inverse temperature allows one to formally connect statistical mechanics and quantum

mechanical time evolution. The density matrix operator exp(−βĤ) is formally identical to

the time evolution propagator exp(−ıtĤ/~) if the inverse temperature β is replaced by ıt/~.

Real time propagation can be interpreted as particles following different paths, with the phase

adding up either constructively or destructively. In imaginary time propagation, particles

also follow different paths but with the probability being determined by the Boltzmann

factor. Thus, we often refer to the inverse temperature as imaginary time and to the density

matrix operator as imaginary time propagator.

It is worth mentioning that if we propagate an arbitrary initial wave packet (which has

finite overlap with the ground state wave function) to infinite imaginary time, it will lose

energy and, assuming the absence of degeneracies, eventually decay to the ground state of

Ĥ. This imaginary time propagation scheme is the key idea behind the DMC [107] and

PIGS algorithms [100]. In PIMC simulations, in contrast, the propagation stops at a finite

β, namely the temperature of physical interest.
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2.3 Partition function and density matrix

In the infinite temperature limit, i.e., for β = 0, ρ̂ = exp(−βĤ) becomes the identity

operator. This implies that the density matrix is simply a δ-function in position space,

ρ(R,R′; 0) = δ(R−R′). (2.9)

To propagate to finite temperature, one can solve the Bloch equation [19]

∂ρ̂

∂β
= −Ĥρ̂, (2.10)

which is obtained by taking the partial derivative of the density matrix operator with respect

to β. Equation (2.10) can be interpreted as a diffusion equation in the inverse temperature

β. If the kinetic energy operator K̂ is zero, the density matrix operator ρ̂ = exp(−βV̂ ) can

be readily solved for. Similarly, if the potential energy operator V̂ is zero, the density matrix

operator can also be solved for. In this case, the solution ρ0 corresponds to free particles

diffusing in space and is a product of single-particle Gaussians,

ρ0(R,R′; β) = (4πλmβ)−3N/2 exp

(
−(R−R′)2

4λmβ

)
, (2.11)

where λm is equal to ~2/(2m). Equation (2.11) shows that the off-diagonal R 6= R′ terms of

ρ0 are non-zero. This shows explicitly that the kinetic energy operator is non-local in position

space. If V̂ and K̂ are both non-zero, then the density matrix at finite T is known only for a

few simple problems such as non-interacting particles in a harmonic trap [20] and two par-

ticles with zero-range interactions. In general, the density matrix is not known analytically.

If it were known, it would be unnecessary to perform a numerical PIMC simulation.

There exist many ways to approximate the density matrix. Most of the approaches are

based on the following idea. The density matrix operator at low temperature (large β) can
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be written as a product of density matrix operators at high temperature (small β),

exp(−βĤ) = [exp(−βĤ/n)]n. (2.12)

Inserting the identity ∫
R

|R〉 〈R| dR = 1̂ (2.13)

n− 1 times into Eq. (2.12),

〈R0|e−βĤ |Rn〉 = 〈R0| e−βĤ/n
∫
R1

|R1〉 〈R1| dR1︸ ︷︷ ︸
=1̂

e−βĤ/n
∫
R2

|R2〉 〈R2| dR2︸ ︷︷ ︸
=1̂

× . . .

×
∫
Rn−1

|Rn−1〉 〈Rn−1| dRn−1︸ ︷︷ ︸
=1̂

e−βĤ/n |Rn〉 , (2.14)

we obtain

ρ(R0,Rn; β) =

∫
R1

∫
R2

. . .

∫
Rn−1

ρ(R0,R1; β/n)ρ(R1,R2; β/n)× . . .

×ρ(Rn−1,Rn; β/n)dR1dR2 . . . dRn−1. (2.15)

The problem of integrating over the density matrix at the desired temperature β [i.e., inte-

grating the Bloch equation, Eq. (2.10)] has been converted to integrating over many density

matrices at n times larger temperature. As n approaches infinity, the high-temperature

density matrix becomes exact (since ρ̂ approaches the unit operator) and so does the final

answer. The key point is that one can typically find a fairly accurate but approximate high-

temperature density matrix for finite n, requiring n− 1 “auxiliary” integrations that can be

performed by Monte Carlo techniques.

Each set of coordinates Rj inserted in Eq. (2.14) is referred to as a “time slice”. In

addition, R0 and Rn are considered as two extra time slices if R0 is not equal to Rn and
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Figure 2.1: World-line representation for a single particle in a one-dimensional harmonic
trap. The temperature is set to T = ~ω/kB. Panels (a), (b), (c), and (d) show paths for
n = 2, 4, 8, and 16, respectively.

R0 is considered as one extra time slice if R0 is equal to Rn. The position vector rk,j of the

k-th particle in the set of coordinates Rj is referred to as a “bead”. Thus, a single particle is

represented by n beads if R0 = Rn and by n+ 1 beads if R0 6= Rn. The density matrix that

“connects” two consecutive time slices is referred to as a “link”. The inverse temperature

corresponding to this link is τ , where τ = β/n. The density matrix that “connects” two

consecutive beads is referred to as a “single-particle link”. If R0 is equal to Rn, the number

of beads n for a single particle is equal to the number of time slices. In addition, for

closed paths, the set of all time slices {R0, . . . ,Rn−1} is referred to as a configuration. The

definitions are summarized in Table 2.1.

The determination of many observables requires the full trace of the density matrix. This

implies that the zeroth time slice R0 and the time slice Rn have to be the same, i.e., all

paths need to be closed. The conclusions (Sec. 9) contain a short discussion of open paths.

The particle statistics, which will be discussed in Sec. 2.4, changes the picture of the closed

paths a bit; however, even in the presence of permutations, there exist no open ends (at least

not in the applications pursued in this thesis).

Figure 2.1 shows the world-line representation of a single particle in a one-dimensional
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Figure 2.2: Isomorphism between path integrals for a single free particle in two-dimensional
space and classical particles connected by springs. In the path integral interpretation, the
circles and wiggly lines depict the beads and (single-particle) links of a single particle, respec-
tively. Panels (a), (b), and (c) are for low, medium, and high temperatures. In the classical
mechanics formulation, the circles and wiggly lines depict particles and springs, respectively.

harmonic trap. World lines move in position space (x-axis) and imaginary time (y-axis).

The position vector r0 of the initial bead (τ = 0) and the position vector rn (τ = β) are

the same, as required for closed paths. Panels (a), (b), (c), and (d) show paths for n = 2,

4, 8, and 16 beads, respectively. As n increases, the path is resolved in more detail (each

link is more accurate) and observables calculated based on the sampled paths become more

accurate.

Figure 2.2 depicts a single particle (the Hamiltonian only contains the kinetic energy

term) in two-dimensional space [109]. Two consecutive beads (circles in Fig. 2.2) are con-

nected by a single-particle link (wiggly line in Fig. 2.2). The kinetic energy is “carried” by

the density matrices represented by the links. The expression for the density matrix in free

space reads [Eq. (2.11) for a single particle with position vector r = (x, y)]

ρ0(r, r′; β) = (4πλmβ)−1 exp

(
−(r− r′)2

4λmβ

)
. (2.16)

The action S [19],

S = − ln[ρ0(r, r′; β)], (2.17)
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of the single-particle link that connects the beads labeled r and r′ reads

S = ln(4πλmβ) +
(r− r′)2

4λmβ
. (2.18)

It can be seen that the action S has the same form as that of a “spring potential” Vs(r−r′) for

two classical particles with position vectors r and r′ connected via Hooke’s law. The density

matrix can thus be interpreted as being proportional to the Boltzmann factor exp(−βVs)

of a classical system of springs. Note that r and r′ in Eqs. (2.16) and (2.18) correspond to

position vectors of consecutive beads for one single particle while r and r′ in the classical

isomorphism correspond to position vectors of two different particles. Thus, we can interpret

the PIMC simulation of a single particle at finite temperature as a simulation of a chain of

classical particles connected by springs (or a polymer with nearest neighbor interactions).

Figures 2.2(a), (b), and (c) are for low, medium, and high temperatures, respectively. The

stiffness of the springs is determined by the temperature 1/τ of the links. The size of the

path is large at low temperature, decreases with increasing temperature and approaches the

point-particle limit at infinite temperature.

We now consider the opposite limit, i.e., we neglect the kinetic energy and only consider

the potential energy. As discussed before, the potential energy is usually local and appears

in the diagonal part of the density matrix in position space. Thus the potential energy is

carried by the beads (circles in Fig. 2.2) and not by the links. In this potential-energy-only

scenario, the beads are sitting at the same location for all imaginary times, i.e., Fig. 2.2(c)

represents the path for a single particle in the absence of the kinetic energy term at all

temperatures. Intuitively, this can be understood by realizing that the delocalization of the

particles is introduced by the kinetic energy.

The following two sections introduce two different approaches for approximating the

high-temperature density matrix.
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2.3.1 Trotter formula

One way to approximate the high-temperature density matrix is to use the Trotter for-

mula [110]. At high temperature (small τ , τ = β/n), the kinetic energy contribution K̂ and

the potential energy contribution V̂ to the density matrix can be split,

exp[−τ(K̂ + V̂ )] = exp(−τK̂) exp(−τ V̂ ) +O(τ 2), (2.19)

where the notation O(τ 2) indicates that the leading-order error scales, in general, as τ to

the power of 2. More specifically, by Taylor expanding the exponentials, one can prove that

the leading-order error is 1
2
τ 2[K̂, V̂ ], where [K̂, V̂ ] is the commutator between K̂ and V̂ ,

[K̂, V̂ ] = K̂V̂ − V̂ K̂. In the infinite n limit, the Trotter formula becomes exact,

exp[−τ(K̂ + V̂ )] = lim
n→∞

[exp(−τK̂/n) exp(−τ V̂ /n)]n. (2.20)

In practice n cannot be infinitely large. Thus, we perform calculations for different n and

extrapolate the observables of interest to the infinite n limit.

Importantly, the Trotter formula can be extended to higher orders. We can readily adopt

a O(τ 3) scheme by further splitting the kinetic energy term or the potential energy term,

exp[−τ(K̂ + V̂ )] = exp(−τK̂/2) exp(−τ V̂ ) exp(−τK̂/2) +O(τ 3) (2.21)

or

exp[−τ(K̂ + V̂ )] = exp(−τ V̂ /2) exp(−τK̂) exp(−τ V̂ /2) +O(τ 3). (2.22)

In practice, Eq. (2.22), which is accurate up to second order [the error is O(τ 3)], is easier to
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use than Eq. (2.21). In position space, Eq. (2.22) reads

ρ(R,R′; τ) = exp[−τV (R)/2] exp[−τV (R′)/2]ρ0(R,R′; τ) +O(τ 3), (2.23)

where ρ0 [see Eq. (2.11)] is the density matrix that accounts for the kinetic energy term.

One can reach successively higher accuracy by the repeated use of the Baker-Campell-

Hausdorff formula [111]

eεÂeεB̂ = eĈ , (2.24)

where

Ĉ = ε(Â+ B̂) +
1

2
[Â, B̂]ε2 +

1

12
([Â, [Â, B̂]] + [B̂, [B̂, Â]])ε3

− 1

24
[B̂, [Â, [Â, B̂]]]ε4 +O(ε5). (2.25)

Using Eqs. (2.24) and (2.25) twice, we obtain [112]

eεB̂eεÂeεB̂ = eD̂, (2.26)

where

Ĉ = ε(Â+ 2B̂)− 1

6
ε3[Â, [B̂, Â]] +

1

6
ε3[B̂, [Â, B̂]] +O(ε5). (2.27)

Applying Eqs. (2.26) and (2.27) twice to

exp

(
−τ V̂

6

)
exp

(
−τ K̂

2

)
exp

(
−τ 2Ṽ

3

)
exp

(
−τ K̂

2

)
exp

(
−τ V̂

6

)
, (2.28)
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we can check that the fourth-order factorization [112]

exp
[
−τ(K̂ + V̂ )

]
= exp

(
−τ V̂

6

)
exp

(
−τ K̂

2

)
×

exp

(
−τ 2Ṽ

3

)
exp

(
−τ K̂

2

)
exp

(
−τ V̂

6

)
+O(τ 5), (2.29)

where Ṽ is given by V̂ + τ 2[V̂ , [K̂, V̂ ]]/48, holds. The term [V̂ , [K̂, V̂ ]] in position space can

be simplified to (~2/m)
∑N

i=1 |∇iV |2 (the term |∇iV |2 corresponds to the square of the force

on the ith particle). The gradient ∇i in three spatial dimensions can be written as

∇i = x̂
∂

∂xi
+ ŷ

∂

∂yi
+ ẑ

∂

∂zi
, (2.30)

where x̂, ŷ and ẑ are unit vectors pointing in the x, y, and z directions, respectively. Care

needs to be taken in evaluating the derivatives, since V usually contains a double sum

over two-body potentials or even a triple sum over three-body potentials. In most cases, the

evaluation of the force terms cannot be simplified analytically, implying that the evaluation of

double commutators involves double or triple sums over N , making the numerical evaluation

comparatively expensive. Note that Eq. (2.29) is not the only form of the fourth-order

factorization [112]. Specifically, the exponentials containing the potential energy can have

different numerical factors.

Using the Trotter formula, the isomorphism of a single particle in free space and the

classical spring system can be extended to multiple particles with interactions. Figure 2.3

depicts two interacting particles in two-dimensional space (the particles do not feel a single-

particle potential). In this case, the density matrix for the link that connects the beads
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Figure 2.3: Isomorphism between path integrals for two interacting particles in two-
dimensional space and classical particles connected by springs. In the path integral interpre-
tation, the circles and wiggly lines depict the beads and links of a single particle, respectively.
Dotted lines depict the two-body interaction between beads with the same imaginary time
index. Panels (a), (b), and (c) are for low, medium, and high temperatures. In the classical
mechanics formulation, the circles and wiggly lines depict particles and springs, respectively.
Dotted lines depict the two-body interaction between selective particles. Earlier in the text,
position vectors of the kth particle are denoted by rk,j. Using this notation, one has rk = rk,0,
r′k = rk,1, and r′′k = rk,2.

labeled r1, r′1, r2, and r′2 reads [see Eq. (2.22)]

ρ({r1, r2}, {r′1, r′2}; τ) = e−τV2b(r1−r2)/2e−τV2b(r′1−r′2)/2ρ0(r1, r
′
1; τ)ρ0(r2, r

′
2; τ), (2.31)

where V2b denotes the two-body interaction potential between particles 1 and 2 and

ρ0(rk, r
′
k; τ) the single-particle density matrix of the kth particle [see Eq. (2.16)]. As in

Fig. 2.2, two consecutive beads for the same particle (circles in Fig. 2.3) are connected by

single-particle links, which represent the density matrices ρ0 (wiggly lines in Fig. 2.3). Since

the two-body interaction (dotted lines in Fig. 2.3) is diagonal in position space [see the

exponentials on the right hand side of Eq. (2.31)], it connects beads of different particles

with the same index, i.e., it connects r1 and r2, r′1 and r′2, and r′′1 and r′′2 (or rk,j−1 and

rk,j). Figures 2.3(a), (b), and (c) are for low, medium, and high temperatures, respectively.

Each particle in the PIMC simulation corresponds to n classical particles connected by

springs. The classical particles corresponding to different chains interact only if they have

the same bead index. The action S of the paths corresponds to the total energy Etot of the

corresponding classical system. Correspondingly, the density matrix of the system treated
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in the PIMC simulation corresponds to the Boltzmann factor exp(−τEtot) of the classical

system.

2.3.2 Pair product approximation

For the pairwise additive potential model

V (R) =
N−1∑
j=1

N∑
k=j+1

V2b(rjk), (2.32)

the high-temperature density matrix can be evaluated using the pair product approxima-

tion [19]. To introduce the pair product approximation, we define the two-body kinetic

energy operator K̂jk in position space,

K̂jk = −~2

m
∇2

rjk
, (2.33)

and assume the absence of single-particle potentials. The relative non-interacting and in-

teracting two-body Hamiltonian are K̂jk and K̂jk + V̂2b(rjk), respectively. The pair product

approximation considers two-body correlations explicitly, but not higher-body correlations,

and writes the many-body density matrix as a product over single-particle density matrices

and two-body density matrices,

ρ(R,R′; τ) ≈ ρ0(R,R′; τ)

(
N∏
j<k

ρ̄rel(rjk, r
′
jk; τ)

)
, (2.34)

where ρ̄rel,

ρ̄rel(rjk, r
′
jk; τ) =

〈rjk| exp[−τ(K̂jk + V̂2b(rjk)]|r′jk〉
〈rjk| exp(−τK̂jk)|r′jk〉

, (2.35)

is the reduced pair density matrix. The denominator of the reduced pair density matrix

coincides with the known relative non-interacting two-body density matrix. Thus the only
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“non-trivial input” is the relative density matrix of the interacting two-body system. One

can readily see that the pair product approximation is exact for two particles at any tem-

perature because the center of mass and relative degrees of freedom separate in this case.

In some cases such as for the two-body zero-range interaction potential, the exact reduced

pair density matrix is known analytically [113–116]. In other cases such as for the two-body

hardcore potential, the approximate reduced pair density matrix is known analytically in

closed form [117, 118]. If the reduced density matrix is not known analytically, one can

perform a partial wave decomposition and obtain a numerical representation of the reduced

two-body density matrix [19].

In dilute gases or weakly-bound droplets, two systems considered in this thesis, the in-

terparticle spacing is typically so large that two-body collisions dominate over three- and

higher-body collisions. Moreover, the importance of three- and higher-body collisions de-

creases with increasing temperature. The leading-order error of the pair product approx-

imation is determined by the importance of three-body correlations. For two-component

equal-mass Fermi gases with two-body zero-range interactions, three-body correlations are

suppressed by the Pauli exclusion principle. For this system, we found that the pair product

approximation provides an extremely good description of the density matrix. Specifically,

we obtain accurate simulation results for a small number of beads (see Ch. 8 for details).

For bosons, in contrast, three-body correlations can be significant. As a consequence, the

pair product approximation is not as efficient as for two-component fermions. As discussed

in Ch. 7, many of our simulations employ a large number of beads (“large” in this con-

text means about two orders of magnitude more number of beads as in the simulations for

fermions).

For the pair product approximation, we are not able to use the classical isomorphism

because the kinetic and potential energy contributions are mixed. One needs to evaluate the

single-particle density matrix, which can be represented by springs as in Figs. 2.2 and 2.3.
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However, one also needs to evaluate the reduced two-body density matrix, which connects

two consecutive beads of one particle’s path with the same consecutive beads of another

particle’s path. These “four-bead connections” do not have a simple classical analog.

2.3.3 Comparison of the two approximations

Both methods of approximating the high-temperature density matrix have their advantages

and disadvantages.

In the Trotter formula based scheme, the kinetic and the potential energy terms are

treated separately. Inserting the identity
∫
R
|R〉 〈R| dR = 1̂ [see Eq. (2.15)], the potential

energy is diagonal in position space. This means that one can directly evaluate the potential

energy term at each time slice. The kinetic energy term contains off-diagonal terms and

needs to be evaluated at each link instead of at each time slice. Nevertheless, since the kinetic

energy term corresponds to a simple Gaussian, one can perform the sampling according to

the kinetic energy piece of the density matrix readily and, generally, efficiently (see Sec. 2.5.4

for details).

Even though the Trotter formula can formally be generalized to expressions that are

accurate to order τ 5, τ 6,. . . , these expressions are not that useful in practice because they

contain either commutators that involve rather complicated expressions or terms correspond-

ing to negative imaginary time, which are not normalizable. There exists a multi-product

expansion for the propagator [119]; however, applications thereof are still rare [120]. Thus

present-day algorithms, including the algorithm developed during my Ph.D. career, employ

Trotter formula based decompositions that are accurate to order τ 4.

In the pair product approximation, the two-body reduced density matrix contains the

kinetic energy and potential energy contributions. This means that the reduced two-body

density matrix needs to be evaluated at each link. Because the reduced two-body density

matrix is, in general, not a simple Gaussian, the sampling is generally less efficient (see
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Sec. 2.5 for details). Furthermore, as shown in Sec. 2.4, the evaluation of the permutations is

more involved. In general, the computational complexity of the pair product approximation

is larger than that of the Trotter formula.

From our perspective, the pair product approximation has two advantages. i) Typically,

the pair product approximation is more accurate than the Trotter formula based scheme,

especially in cases where three-body correlations are suppressed such as in the case of the

two-component Fermi gas. ii) More importantly, the pair product approximation can deal

with a class of two-body potentials that the Trotter formula based scheme cannot deal with

(at least no such treatment is known to us). For example, the two-body hardcore and

zero-range potentials contain infinities and can thus not be treated by the Trotter formula

based scheme. However, the infinities can be dealt with analytically in the pair product

approximation.

2.4 Permutations

To account for the particle statistics, one needs to ensure the proper behavior of the density

matrix under particle permutations. For Boltzmann particles, the sum over the eigen states

in Eq. (2.4) is “unrestricted”. For bosons and fermions, in contrast, the sum includes only

eigen states with the proper exchange properties. Said differently, the Hilbert space for

identical bosons or identical fermions is restricted compared to that of Boltzmann particles

described by the same Hamiltonian. The high-temperature approximations for the density

matrix that are discussed in Sec. 2.3 apply to Boltzmann particles. To properly symmetrize

or anti-symmetrize the density matrix operator ρ̂, we introduce the symmetrizer P̂ [19].

For the single-component Bose and Fermi systems (N identical particles), P̂ can be written

as [121]

P̂ =
1

N !

∑
σ

(±1)NI(σ)P̂σ, (2.36)
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where σ denotes the permutation of particle indices, NI(σ) the number of inversions in

σ [122], and P̂σ the corresponding permutation operator. For example, the symmetrizers for

two and three identical fermions are Â2 and Â3, Â2 = 1
2
(1 − P̂12) and Â3 = 1

6
(1 − P̂12 −

P̂13 − P̂23 + P̂123 + P̂132), respectively. Here, P̂ijk...l replaces the identity of particle i (i.e.,

its entire “information”, including spatial coordinates, spin degrees of freedom, . . . ) with

that of particle j, that of particle j with that of particle k, . . . , and that of particle l with

that of particle i. The symmetrizer P̂ commutes with P̂ij if the i-th and j-th particles are

identical. In the previous examples, Â2 commutes with P̂12 and Â3 commutes with P̂12, P̂13,

and P̂23. The definition of the symmetrizer P̂ can be generalized to multi-component Bose

and Fermi systems as well as Bose-Fermi mixtures. In these cases, the total symmetrizer is

written as a product of symmetrizers for each component. For example, the symmetrizer for

the mixture of two identical bosons (particles 1 and 2) and two identical fermions (particles

3 and 4) reads 1
4
(1 + P̂12)(1− P̂34).

The symmetrizer P̂ also commutes with the Hamiltonian Ĥ and the density matrix

operator ρ̂. P̂ serves the purpose of projecting out the wave functions that satisfy the

proper exchange symmetry, i.e., it divides the Hilbert space into two parts: i) If ψs is an

eigenstate with the proper symmetry, then one has P̂ψs = ψs. ii) If, in contrast, ψns is an

eigen state that does not have the proper exchange symmetry, then we have P̂ψns = 0. We

note that the eigen values of the symmetrizer P̂ are either 0 and 1 while the eigen values of

the two-particle permute operator P̂12 are −1 and 1. Since the eigen values of P̂ are either

0 or 1, we have

P̂2 = P̂ . (2.37)

To prove Eq. (2.37), we introduce a unitary matrix U that diagonalizes the Hermitian sym-

metrizer P̂ , i.e., D̂ = UP̂U−1 is diagonal. Because P̂ and D̂ are connected by a unitary

transformation, D̂ and P̂ share the same eigen values. As the eigen values of D̂ are either 0
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or 1, D̂ is diagonal with diagonal elements 0 or 1. This implies

D̂2 = D̂. (2.38)

We now rewrite P̂2 using P̂ = U−1D̂U ,

P̂2 = U−1D̂UU−1D̂U (2.39)

= U−1D̂D̂U (2.40)

= U−1D̂U (2.41)

= P̂ . (2.42)

Thus, P̂2 = P̂ and we have proven Eq. (2.37).

The symmetrized density matrix operator reads ρ̂unsymmP̂ , where ρ̂unsymm is the unsym-

metrized density matrix operator, i.e., the density matrix operator for the corresponding

system with Boltzmann particles. In position space, the symmetrized density matrix opera-

tor can be written as [19]

〈R| exp(−βĤ)P̂|R′〉 = 〈R| exp(−βĤ)|P̂R′〉 = ρ(R, P̂R′; β). (2.43)

We now prove Eq. (2.43). In Schrödinger quantum mechanics, the symmetrized density

matrix in position space reads

〈R| exp(−βĤ)
∑
j

|ψsymm,j〉 〈ψsymm,j|R〉 , (2.44)

where {ψsymm,j} is the complete set of symmetrized eigen states. The complete set of un-

symmetrized eigen states of Ĥ, i.e., the set of eigen states for Boltzmann particles is denoted

by {ψunsymm,j}. Recall that the P̂ operator can be diagonalized using the matrix U . U
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“reorganizes” the eigen states ψunsymm,j such that the new eigen states are also eigen states

of P̂ . The resulting eigen states ψr,j,

ψr,j =
∑
l

Ujlψunsymm,l, (2.45)

either have the proper symmetry, i.e., P̂ψr,j is equal to ψr,j (in this case, the eigen value of

P̂ is 1) or P̂ acting on ψr,j gives zero (in this case, the eigen value of P̂ is 0). The set of

eigen states {ψr,j} for which P̂ψr,j = ψr,j coincides with the complete set of symmetrized

eigen states. This process of constructing a set of properly symmetrized eigen states from a

set of unsymmetrized eigen states is known as post-symmetrization. We are now ready to

prove Eq. (2.43). Starting with the left hand side of Eq. (2.43) and replacing P̂ by P̂2, we

find

〈R| exp(−βĤ)P̂|R′〉 = 〈R| exp(−βĤ)P̂P̂|R′〉 . (2.46)

Inserting UU−1 = 1̂, we find

〈R| exp(−βĤ)P̂|R′〉 = 〈R| exp(−βĤ)P̂UU−1P̂|R′〉 . (2.47)

Using ∑
l

|ψunsymm,l〉 〈ψunsymm,l| = 1̂, (2.48)

we find

〈R| exp(−βĤ)P̂|R′〉 = 〈R| exp(−βĤ)P̂U
∑
l

|ψunsymm,l〉 〈ψunsymm,l| U−1P̂|R′〉 . (2.49)
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Using Eq. (2.45) and reordering sums, we obtain the auxiliary identity

U
∑
l

|ψunsymm,l〉 〈ψunsymm,l| U−1 =
∑
l

|ψr,l〉 〈ψr,l| . (2.50)

Using Eq. (2.50) in Eq. (2.49), we find

〈R| exp(−βĤ)P̂|R′〉 = 〈R| exp(−βĤ)P̂
∑
l

|ψr,l〉 〈ψr,l| P̂|R′〉 . (2.51)

Using P̂
∑

l |ψr,l〉 〈ψr,l| P̂ =
∑

l |ψsymm,l〉 〈ψsymm,l|, we finally arrive at

〈R| exp(−βĤ)P̂|R′〉 = 〈R| exp(−βĤ)
∑
l

|ψsymm,l〉 〈ψsymm,l|R′〉 . (2.52)

Since the right hand side of Eq. (2.52) is equal to the right hand side of Eq. (2.43) [see also

Eq. (2.44)], we have proven that ρ̂unsymmP̂ is the symmetrized density matrix.

For single-component bosons or fermions, the symmetrized density matrix can be ex-

panded as follows [see Eq. (2.36)]:

ρ(R, P̂R′; β) =
1

N !

∑
σ

(±1)NI(σ)ρ(R, P̂σR
′; β). (2.53)

An important point is that the density matrix can be evaluated stochastically provided each

term in the sum is real. This is the case if Ĥ is independent of time and Hermitian. The

positive terms on the right hand side of Eq. (2.53) naturally correspond to a probability.

The negative terms on the right hand side of Eq. (2.53), in contrast, can be evaluated using

their magnitude for the sampling and separately keeping track of the sign. To account

for the permutations in the low-temperature density matrix, we write the low-temperature

density matrix as integrals over products of high-temperature density matrices as before.
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The symmetrized density matrix operator ρ̂unsymmP̂ in position space reads

ρ(R0, P̂Rn; β) =

∫
R1

∫
R2

. . .

∫
Rn−1

ρ(R0,R1; β/n)ρ(R1,R2; β/n) . . .

ρ(Rn−1, P̂Rn; β/n)dR1dR2 . . . dRn−1. (2.54)

Here, P̂ is applied to Rn. Because P̂ commutes with the high-temperature density matrix,

the time slice index is arbitrary, i.e., the operator P̂ could be applied to Rn−1 or Rn−2 or

. . . instead of Rn.

Alternatively, we can rewrite, using Eq. (2.37), the symmetrized density matrix operator

ρ̂unsymmP̂ as ρ̂unsymmP̂j, where j is a positive integer. Choosing j to be equal to the number

of time slices n and applying each of the symmetrizers to a different Rj, we obtain

ρ(R0, P̂Rn; β) =

∫
R1

∫
R2

. . .

∫
Rn−1

ρ(R0, P̂R1; β/n)ρ(R1, P̂R2; β/n) . . .

ρ(Rn−1, P̂Rn; β/n)dR1dR2 . . . dRn−1. (2.55)

The advantage of Eq. (2.54) is that it contains “only” N ! terms for a single-component

system while Eq. (2.55) contains N ! × n terms. Because of this, Eq. (2.54) is usually the

preferred choice.

For N identical bosons, the N ! permutations are sampled stochastically. In practice (see

Sec. 2.5.5 for details), this means that P̂Rn on the right hand side of Eq. (2.54) gets replaced

by P̂σRn, where P̂σ is one of the possible permutations. During the simulation, one needs to

keep track of the permutation status of the current configuration. Using the Trotter formula,

the bead rk,j is connected by single-particle links to rk,j±1 for 0 < j < n − 1, to rk,n−2 and

rP̂σk,0 for j = n − 1, and to rk,1 and rP̂σk,n−1 for j = 0. Here, P̂σ is the permutation of the

current configuration.

As discussed in Ch. 1, for fermions with zero-range interactions, the Pauli exclusion
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Figure 2.4: Illustration of paths corresponding to the identity permutation 1̂ [panel (a)] and
the permutation P̂12 [panel (b)] for Eq. (2.54). The circles and wiggly lines show beads and
single-particle density matrices, respectively, for two free particles. Orange circles denote
the head beads r1 and r2.

principle prevents the Thomas collapse. As a consequence, the symmetrizer P̂ needs to

be applied to every link. If one did not do this, the non-symmetrized link would undergo

Thomas collapse, rendering the entire simulation meaningless. In contrast to Eq. (2.54),

the permutation scheme used in Eq. (2.55) applies the symmetrizer to every link explicitly.

Using the Trotter formula, the bead rk,j is connected by single-particle links to all rP̂σk,j±1,

where P̂σ runs through all possible permutations. Therefore, it makes no sense to associate

a fixed permutation status with a configuration.

Figures 2.4(a) and (b) illustrate the paths for a two-particle system corresponding to the

identity permutation 1̂ and corresponding to the permutation P̂12, respectively. The paths

are based on Eq. (2.54), which means that the permutation operator is applied to Rn. For

paths corresponding to the identity permutation, the second bead of the first particle is

connected to the zeroth bead of the first particle, i.e., r′′1 is connected to r1, and the same

for the second particle. For paths corresponding to the permutation P̂12, the second bead of

the first particle is connected to the zeroth bead of the second particle, i.e., r′′1 is connected

to r2, and the second bead of the second particle is connected to the zeroth bead of the

first particle, i.e., r′′2 is connected to r1. Orange circles depict the “head” beads, i.e., beads

belonging to the zeroth time slice. Figure 2.4(b) shows that the permuted path is closed;

however, as opposed to two separate closed paths as in Fig. 2.4(a), we have a single (but
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larger) closed path. Compared to Fig. 2.4(a), the last single-particle link (which connects

time slice indices n − 1 and 0) of the first particle in Fig. 2.4(b) is cut open and a new

single-particle link between the second bead of the first particle (r′′1) and the zeroth bead of

the second particle (r2) is created. This can be summarized by saying that the tail of the

first particle becomes the head of the second particle and that the tail of the second particle

becomes the head of the first particle.

If Eq. (2.54) is used, the stochastic sampling of the permutations requires a move that

helps with “hopping” between different permutations. If Eq. (2.55) is used, no such move is

needed. The permutation sampling is discussed in detail in Sec. 2.5.5.

2.5 Sampling

2.5.1 General scheme: Importance sampling

Equation (2.15) writes the density matrix as a high-dimensional integral over a product of

high-temperature density matrices. This section discusses the Monte Carlo sampling of these

high-dimensional integrals for closed paths with Rn = R0 (there are 3× n×N independent

variables if we are considering three spatial dimensions). Equation (2.5) can be rewritten in

a “democratic manner”,

Z =

∫
R0

. . .

∫
Rn−1

π(R0, . . . ,Rn−1)dR0 . . . dRn−1, (2.56)

where

π(R0, . . . ,Rn−1) = ρ(R0,R1; τ)ρ(R1,R2; τ) . . . ρ(Rn−1,R0; τ). (2.57)

In Eq. (2.57), the order of the density matrices does not matter. This implies that R0, R1,

. . . , and Rn−1 are treated on equal footing, i.e., there exists no starting or ending point of the

chain. In Fig. 2.2, for example, one can pick any of the beads as the initial bead. We denote
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the configuration {R0, . . . ,Rn−1} by x and the probability distribution π(R0, . . . ,Rn−1) by

π(x). The notation of these and other quantities are summarized in Tables 2.1 and 2.2. The

expectation value 〈O〉 of an arbitrary observable O can be written as

〈O〉 =

∫
x
w(x)π(x)dx

Z
=

∫
x
w(x)π(x)dx∫
x
π(x)dx

, (2.58)

where the integration goes over 3× n×N coordinates and the weight function w(x) needs

to be calculated, as will be discussed in Sec. 2.6, for each observable. To see the structure

of 〈O〉 more clearly, we rewrite Eq. (2.58),

〈O〉 =

∫
x

w(x)
π(x)∫

x′
π(x′)dx′

dx. (2.59)

Defining the probability density function p(x),

p(x) =
π(x)∫

x′
π(x′)dx′

, (2.60)

Eq. (2.59) can be rewritten as

〈O〉 =

∫
x

w(x)p(x)dx. (2.61)

In contrast to the probability distribution π(x), the probability density function p(x) is

normalized; w(x) represents the weight contributed to the observable by the configuration x

and p(x) the normalized probability to be in configuration x. Equation (2.61) provides the

basis of importance sampling: Configurations are not blindly distributed evenly in space but

instead distributed according to p(x). The advantage of importance sampling is that most

computer time is used to sample configurations that are physically relevant and little time

to sample configurations that do not contribute significantly to 〈O〉.

The general idea of the PIMC algorithm is to generate configurations x according to p(x)
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and to use the generated configurations to accumulate the weight functions w(x) for a set of

observables. Thus, it is crucial to have correct and efficient sampling schemes that explore

the full configuration space without rejection rates close to 100% or getting stuck around a

local maximum. Section 2.5.2 reviews the basics of selected Monte Carlo methods and the

rest of this section details various sampling methods.

2.5.2 General background on Monte Carlo methods

This section is for general readers who are not familiar with Monte Carlo methods and gives

an introduction to the method. We briefly introduce the random number generator, the

generation of non-uniform random variables, Markov chains, and Metropolis sampling.

To generate samples from a given probability density function, we need a random num-

ber generator to generate random numbers uniformly between 0 and 1. Various random

number generators that generate pseudo random numbers exist (i.e., according to a spe-

cific sequence) [123]. All good random number generators need to pass a variety of tests,

which ensure that the random numbers drawn are independent of each other and uniformly

distributed.

One of the tests, known as autocorrelation (or serial correlation) test [124], examines the

autocorrelation of the random numbers. Given a series of random numbers {x1, . . . , xM},

the lag k correlation coefficient rk, which measures the correlation of the series of numbers

{x1, . . . , xM−k} and {xk+1, . . . , xM}, is given by [125]

rk =

∑M−k
j=1 (xj − x̄)(xj+k − x̄)∑M

j=1(xj − x̄)2
. (2.62)

For a series of independent random numbers generated from a given probability density func-

tion, the mean value of rk is equal to −1/M . rk approximately follows a normal distribution

for sufficiently large M − k and the variance of rk is approximately 1/M . The probability
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Figure 2.5: Correlation coefficient rk as a function of the lag k for a sample of 800 random
numbers uniformly distributed between 0 and 1. The upper and lower solid lines show the
95% confidence interval.

that rk falls into the window

[
−1− 1.96

√
M − k − 1

M − k
,
−1 + 1.96

√
M − k − 1

M − k
] (2.63)

is 95% [125]. Based on hypothesis testing theory [126], we claim, with 95% confidence level,

that a sample is correlated if rk falls outside the window given in Eq. (2.63) (based on a

single test for one k).

Figure 2.5 plots the correlation coefficient rk as a function of the lag k for a sample of 800

random numbers. The upper and lower solid lines show the 95% confidence interval. 5 points

fall outside the 95% confidence band. If we were to apply the test for k = 14, 19, 43, 59 or

74, i.e., the values of k for which rk falls outside the confidence interval, we would conclude

that the sample, and thus the random number generator, is correlated. However, we should

keep in mind that the number of k considered is large and that we expect a few points to

lie outside the 95% confidence interval (5% correspond to 10 points). Since the number of

points outside the confidence interval is consistent with this, we conclude that the sample

passes the autocorrelation test.

Low-dimensional sampling is usually straightforward and can be done in multiple ways.

As an example, we consider a one-dimensional case. Let p1(x) be a probability density

function. If the cumulative distribution function F1(x), F1(x) =
∫ x
−∞ p1(x′)dx′, is analytically
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invertible, then F−1
1 (Y ), where Y is chosen uniformly from between 0 and 1, complies with

the probability density function p1(x). This scheme of generating random numbers is referred

to as direct sampling. Because no trials are thrown out during the sampling, the acceptance

ratio (i.e., the fraction of trials accepted) is by definition 100%. For example, to generate

samples according to the Gamma probability density function pg(x),

pg(x) =


exp(−x) for x > 0

0 for x ≤ 0,

(2.64)

we first compute the cumulative distribution function Fg(x),

Fg(x) =


1− exp(−x) for x > 0

0 for x ≤ 0,

(2.65)

and then the inverse F−1
g (x) of the cumulative distribution function,

F−1
g (x) =


0 for x ≤ 0

− ln(1− x) for 0 < x < 1

∞ for x ≥ 1.

(2.66)

If Y is randomly and uniformly drawn from between 0 and 1, F−1
g (Y ) obeys pg(x). Unfor-

tunately, only a limited number of p1(x) can be generated in this manner. For example, the

normal distribution cannot be generated analytically in this way (of course, one can record

the cumulative distribution function of the normal distribution pointwise and perform the

inversion numerically).

For the normal distribution, the Box-Muller transform [127] can be used. Instead of

generating one random number at a time, the Box-Muller based sampling method generates
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pairs of independent random numbers. Let Y1 and Y2 be independent random numbers that

are uniformly distributed between 0 and 1. Then Z1 and Z2,

Z1 =
√
−2 ln(Y1) cos(2πY2) (2.67)

and

Z2 =
√
−2 ln(Y1) sin(2πY2), (2.68)

are independent random numbers that are normally distributed. Since Y1 and Y2 are used

to generate two new random numbers, the algorithm is characterized by an acceptance ratio

of 100%.

One can speed up the computational effort by using the rejection method. The evaluation

of cos and sin in Eqs. (2.67) and (2.68) is time consuming. Instead, we generate u and v

uniformly between −1 and 1 and discard them if s (s = u2 + v2) is larger than 1. Defining t

such that it satisfies
√
s cos(2πt) = u and

√
s sin(2πt) = v,

√
s and 2πt are identified as polar

coordinates of the variables u and v. It can be proven that s and t are uniformly distributed

between 0 and 1. Comparing with Eqs. (2.67) and (2.68), one obtains

Z1 =
√
−2 ln s

u√
s

(2.69)

and

Z2 =
√
−2 ln s

v√
s
. (2.70)

As before, Z1 and Z2 are normally distributed. This highly efficient approach, which has

an acceptance ratio of 78.5%, is known as the Marsaglia polar method [128]. The Ziggurat

algorithm [129, 130], which is more complicated, provides a factor of around 1.5 speed up

compared to the Marsaglia polar method. Both methods employ rejection sampling. There

exist many other sampling schemes that reject a fraction of the generated random numbers
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to generate a distribution p(x). If the scheme involves a rejection/acceptance step, we quite

generally refer to the sampling scheme as “rejection sampling”.

The rejection sampling cannot be generalized efficiently to very high dimensions. The

dimensionality is 2 in the Marsaglia polar method since we are effectively generating the

pair (Z1, Z2) of random numbers (Z1 and Z2 happen to be independent of each other). The

acceptance ratio of 78.5% originates from the fact that the points are generated in a 2 by

2 square (size of 4) but are accepted only if they lie in a unit circle of size π. To see

how the acceptance ratio changes as the number of dimensions d increases, we consider a

hypothetical high-dimensional rejection sampling method. Specifically, we generate points

in a hypercube of volume 2d and accept the points that lie in a unit hypersphere of volume

πd/2/Γ(d/2 + 1). The acceptance ratio for this hypothetical rejection sampling method is

shown in Fig. 2.6 as a function of the dimension d. The acceptance ratio decreases quickly

as d increases; this is known as the “curse of dimensionality” [131]. For PIMC simulations,

the dimensionality can easily reach 100 or even more and the acceptance ratio would, for

this simple sampling scheme, be smaller than 10−69. Thus, rejection sampling is not a

viable approach. To avoid low acceptance ratios, Markov chain Monte Carlo methods can

be used [124]. Specifically, the Metropolis (Metropolis-Hastings) algorithm is an important

Markov chain Monte Carlo method for generating a sequence of random samples from the

probability distribution π(x) [124]. In principle, the probability distribution can be arbitrary.
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Figure 2.7: Illustration of the equilibration process for a Markov chain (crosses) for the
Gaussian probability density function pG(x) (solid line). The graph employs dimensionless
units. The starting point of the Markov chain is at −5. The x and y axes correspond to the
value and the configuration index, respectively.

A Markov chain is a sequence of random samples, in which the j-th sample depends only

on the (j− 1)-th sample. This implies that a new sample does not have the “memory” of all

previous samples but only of one other sample. If we generate a random initial configuration

x for which the probability distribution π(x) is small and update the configuration repeatedly

with a variety of methods (such as updating a single bead, an entire path, or the center-

of-mass coordinate, etc.) according to π(x), then the algorithm reaches equilibrium after

a finite number of steps. Figure 2.7 illustrates this equilibration process for a simple one-

dimensional example, namely a Gaussian probability density function pG(x) (solid line in

Fig. 2.7). The algorithm used to generate the symbols in Fig. 2.7 is discussed later in the

chapter; for now, we focus on the behavior of the Markov chain, i.e., on the behavior of the

symbols shown in Fig. 2.7. In the example, the initial configuration is −5. The samples

crawl to regimes where π(x) is large. It can be clearly seen that the samples have a “short-

term memory”, i.e., are independent of the initial configuration. The first 25 steps or so

in Fig. 2.7 correspond to the equilibration process. During the equilibration process, the

configurations generated can have a small weight and may not be distributed according to

π(x). The number of steps needed to reach equilibrium varies and needs to be determined
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carefully for each system under study. After equilibrium is reached, the samples generated

from the Markov chain are distributed according to the probability distribution π(x) . At

this point, one can take “measurements”, i.e., we can evaluate w(x) for the observables of

interest. We return to this later in this section.

We now discuss how to update or generate the configurations using the Metropolis al-

gorithm. A Markov process is uniquely defined by the transition probability P (x → x′) to

go from configuration x to configuration x′. The Metropolis algorithm satisfies the detailed

balance condition [124]

π(x)P (x→ x′) = π(x′)P (x′ → x), (2.71)

i.e., the flow of probability from x to x′ is equal to that from x′ to x. This means that there is

no net flow of probability. The Metropolis algorithm needs to ensure ergodicity of the Markov

process. If the process is ergodic, the Markov chain (i) returns to any previously generated

configuration x after a sufficiently long simulation time and (ii) is not periodic (a Markov

chain of {x,x′,x,x′, . . . } is periodic). The ergodicity ensures that the probability distribution

π(x) gets sampled fully. For example, as discussed in Ch. 8, if we use the traditional scheme

of treating the permutations [Eq. (2.54)], for a two-component Fermi gas with zero-range

interactions, the Markov process ends up with a configuration in which all particles sit on

top of each other and the configuration never returns to the original configuration x. This

means that ergodicity is violated and that the Markov process does not generate samples

according to p(x). This renders the sampled configurations meaningless. We note, however,

that while the detailed balance condition together with the ergodicity guarantees that the

equilibrium distribution coincides with the desired probability distribution π(x), there exist

other Monte Carlo methods that do not satisfy the detailed balance condition but yield an

equilibrium distribution that coincides with the desired probability distribution π(x).

The Metropolis algorithm consists of two steps [124]: (i) the generation of a proposed

configuration (or move) and (ii) the acceptance or rejection of the proposed configuration
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(or move). The combination of (i) and (ii) leads to a new configuration. Starting from

the configuration x, we propose a new configuration x′ according to a proposal distribution

G(x → x′) and accept (the new configuration would be x′) or reject the new configuration

(the new configuration would be x) according to the acceptance distribution A(x → x′).

The Metropolis algorithm chooses A(x→ x′) such that [124]

A(x→ x′) = min

(
1,
π(x′)G(x′ → x)

π(x)G(x→ x′)

)
. (2.72)

We verify that the detailed balance condition [Eq. (2.71)] is satisfied in the following. If

π(x′)G(x′ → x) is smaller than π(x′)G(x→ x′), we obtain

P (x→ x′) = G(x→ x′)A(x→ x′) =
π(x′)G(x′ → x)

π(x)
(2.73)

and

P (x′ → x) = G(x′ → x)A(x′ → x) = G(x′ → x). (2.74)

Plugging Eqs. (2.73) and (2.74) into Eq. (2.71), we confirm that Eq. (2.71) holds. Similarly,

if π(x′)G(x′ → x) is larger or equal to π(x′)G(x→ x′), following the same logic, we confirm

that Eq. (2.71) holds. Thus, we have shown that detailed balance is fulfilled.

In practice, the acceptance ratio A (which is a number and not an x- and x′-dependent

function), i.e., the fraction of rejected moves, should be monitored. This acceptance ratio A

is different from the acceptance ratio encountered in the rejection sampling. In the rejection

sampling, a rejected configuration does not lead to a new configuration. In the Metropolis

sampling, in contrast, a rejected configuration does lead to a new configuration. When a

configuration is rejected, the old configuration becomes the new configuration.

As an example, we write the probability distribution π(x) as a product of the guiding
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function g(x) and the acceptance function a(x),

a(x) =
π(x)

g(x)
. (2.75)

We choose the proposal distribution G(x → x′) such that the equilibrated probability

distribution without the rejection move is proportional to g(x). Using π(x) ∝ g(x) and

P (x→ x′) = G(x→ x′) in Eq. (2.71), we obtain

G(x′ → x)

G(x→ x′)
=
g(x)

g(x′)
. (2.76)

Plugging Eqs. (2.76) and (2.75) into Eq. (2.72), the acceptance distribution A(x → x′)

simplifies to

A(x→ x′) = min

(
1,
a(x′)

a(x)

)
. (2.77)

The crosses in Fig. 2.7 are generated following the discussion in the previous paragraph.

To generate configurations according to the Gaussian probability density function pG(x),

pG(x) =
exp(−x2

2
)

√
2π

, (2.78)

we choose g(x) = 1 and a(x) = pG(x). To generate the uniform distribution g(x) = 1, we

propose a new configuration x′ randomly from the window [x− δx, x+ δx], where x denotes

the current configuration. We then have

G(x→ x′) =


1 for x− δx < x′ < x+ δx

0 otherwise.

(2.79)

The acceptance distribution is given in Eq. (2.77). Because some configurations are rejected,

the positions for some consecutive configuration indices in Fig. 2.7 are the same. In the
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Figure 2.8: Correlation coefficient rk as a function of the lag k for the Markov chain
discussed in Fig. 2.7. The equilibration stage (configuration index 1 to 25 in Fig. 2.7) is not
considered here, i.e., the series of points {x26, . . . , x100} is considered. The upper and lower
solid lines denote the 95% confidence interval.

example, 20 points out of 100 points are rejected, yielding an acceptance ratio of 80%.

For most of the updates (i.e., the generation of proposed new configurations), the accep-

tance ratio should not be too large and not be too small. A high acceptance ratio typically

implies that the deviation between the old and new configurations is, on average, small.

This typically means that the configuration space is explored comparatively slowly (Fig. 2.7

belongs to this case; see also Fig. 2.8). A low acceptance ratio typically means that the

Markov chain contains many identical configurations; again, this means that the configu-

ration space is explored comparatively slowly. Both cases can result in large correlations

of the sample and should be avoided. As a rule of thumb, the acceptance ratio should lie

roughly between 30% and 50% [132]. In special cases, the acceptance ratio can be as high

as 100% without loss of efficiency. One such move is the center-of-mass move discussed in

Sec. 2.5.8. Even though this move has a high acceptance ratio, the proposed configurations

deviate significantly from the previous configurations.

Even if we minimize the correlations between configurations by choosing an appropriate

acceptance ratio, the samples are, in general, highly correlated. As an example, Fig. 2.8

shows the correlation coefficient rk as a function of the lag k for the series of points shown in

Fig. 2.7. If the lag k is smaller than 15, rk lies outside the 95% confidence interval, indicating
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that the sample is strongly correlated for small lag. For larger k (k > 41), the rk falls into the

95% confidence interval (note, only a small portion of the k > 41 data is shown in Fig. 2.8).

To reduce the correlations, we do not “measure” the observables for every configuration but

instead “measure” observables for every Ks-th configuration. Ks should be chosen to be on

the order of the correlation length. For example, Ks is around 20 for the samples used in

Figs. 2.7 and 2.8. If we choose a large Ks, the samples are truly independent. Unfortunately,

the use of truly uncorrelated samples wastes a huge amount of computer time since many

configurations, which contain “partial information”, are not being used when accumulating

observables. In practice, we choose Ks such that the correlations are not too large and not too

small, that is, we weigh the computational effort involved in generating new configurations

and calculating observables. For example, if an observable is “cheap” to calculate, it may be

fine to choose a relatively small Ks. If, however, an observable is “expensive” to calculate,

then it may be better to choose a somewhat larger Ks.

2.5.3 “Naive move”

The simplest move (the “naive move”) consists of shifting the position vector rold of a single

bead by δr, where δr is drawn uniformly from the window [−∆r,∆r]. The basic idea behind

this move is that the density matrix is a smooth function of x and that a small change in x

does not introduce a huge change in the probability distribution π(x). The size of the window

∆r can be adjusted such that the acceptance ratio of the proposed new position vector is

around 50%. The proposal distribution G(x→ x′) is a constant if only one bead rold is moved

and the new bead lies in the window [−∆r + rold,∆r + rold]; otherwise, G(x→ x′) = 0. The

guiding function g(x) is a constant across all space. According to Eq. (2.75), the acceptance

function a(x) is the same as the probability distribution π(x). Thus, the move is accepted

according to

A(x→ x′) = min

(
1,
π(x′)

π(x)

)
. (2.80)

60



Importantly, one cannot choose an unbalanced window like [−ε∆r,∆r], where ε < 1, since

the detailed balance condition, Eq. (2.71), is not satisfied in this case. In this example, it is

possible to go from x to x + ∆r but it is not possible to go from x + ∆r to x in one move.

The algorithm for the naive move is the following: i) Let the current configuration x be

x = (R0, . . . ,Rn−1). Randomly select a particle index k and a time slice index j. Set rold =

rk,j and calculate the old probability distribution πold = π(R0, . . .Rn−1). ii) Generate a new

position rnew = rold + δr, where δr is drawn uniformly from the window [−∆r,∆r]. Define

Rnew
j = (r1,j, . . . , rk−1,j, rnew, rk+1,j, . . . , rN,j) and calculate the new probability distribution

πnew = π(R0, . . .Rj−1,R
new
j ,Rj+1, . . .Rn−1). iii) Calculate the ratio πnew/πold. If this ratio

is larger than a random number uniformly drawn from 0 to 1, accept the move and set

rk,j = rnew; otherwise, reject the move and set rk,j = rold.

Although the naive move attemps to change only one bead at a time, whether the pro-

posed move gets accepted or rejected depends on all the beads, i.e., the coordinates of all

particles at all time slices, since the acceptance/rejection depends on the ratio πnew/πold.

Because the probability distribution π(x) is a product of density matrices represented by the

links [Eq. (2.57)], the only contributing terms to the ratio πnew/πold are the density matrices

ρ(Rj−1,Rj; τ) and ρ(Rj,Rj+1; τ). Furthermore, if one uses the second-order Trotter formula

[Eq. (2.23)], which treats the potential and kinetic energy terms separately, the terms that

contribute to ρ(Rj−1,Rj; τ) and ρ(Rj,Rj+1; τ) are the potential energy term exp[−τV (Rj)]

and the kinetic energy terms ρ0(rk,j−1, rk,j; τ) and ρ0(rk,j, rk,j+1; τ).

The caveat of the naive move is that the correlation length is typically long. In the best

case scenario (i.e., in the case where all beads of all particles are considered exactly once

and all proposed moves are accepted), n×N moves are needed to generate a configuration

in which every bead differs from the starting configuration. Thus, we calculate observables

for every (α×n×N)-th configuration, where α is a constant greater than 1 that is adjusted

to ensure that the observables are calculated from configurations with small correlations. In
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Figure 2.9: Illustration of the naive move for a single particle in a one-dimensional harmonic
trap for n = 32 beads. Black circles depict the old bead positions. The red circle shows
the proposed bead position for the 16-th time slice index. It can be seen that only two
links (namely those involving the 15-th and 16-th beads and the 16-th and 17-th beads) are
changed.

practice, we find that α lies between 2 and 20.

Figure 2.9 illustrates the naive move for a single particle in a one-dimensional harmonic

trap. It can be seen that only one bead position is changed for the proposed move.

2.5.4 “Wiggle move”

In general, the closer the guiding function g(x) is to the probability distribution π(x), the

more efficient the sampling method becomes. At high temperature, the systems considered

in this thesis typically have a low density and are therefore described quite well by the non-

interacting density matrix. Thus, we use the non-interacting density matrix as the guiding

function g(x). Since the non-interacting density matrix is a product of simple Gaussians both

in free space [Eq. (2.11)] and in a harmonic trap [Eq. (5.22)], one can generate configurations

with 100% acceptance ratio using the Box-Muller transformation or with high efficiency using

the Marsaglia polar method or the Ziggurat algorithm. If the difference between the density

matrix of the system to be simulated and the non-interacting density matrix is small, a(x)
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[see Eq. (2.75)] is close to 1 for all x. In this case, the acceptance ratio for a move generated

using the guiding function g(x) is high. Despite the large acceptance ratio, the correlation

between consecutive configurations is small. In the non-interacting limit, the acceptance

ratio is exactly 1.

We now consider an example. For the second-order Trotter formula (neglecting per-

mutations), the kinetic energy contribution and the potential energy contribution separate

naturally. Plugging Eq. (2.23) into Eq. (2.57) and choosing the non-interacting density

matrix ρ0(x) in free space,

ρ0(x) =
N−1∏
k=0

ρ0(Rk,Rk+1; τ), (2.81)

as the guiding function g(x), we obtain that a(x) contains only potential energy terms,

a(x) = exp

(
−τ

N−1∑
k=0

V (Rk)

)
. (2.82)

Alternatively, one could use the non-interacting density matrix in a harmonic trap [Eq.

(5.22)] as the guiding function. Readers are referred to Ref. [20] to learn how to modify the

equations accordingly. In the following, we use the non-interacting density matrix in free

space as the guiding function. Depending on the number of beads changed simultaneously,

the wiggle move is a single-bead move or a multi-bead move.

We now introduce the single-bead version of the wiggle move; the multi-bead version will

be discussed in a separate step. We randomly select a particle index j and a time slice index

k. Similar to the naive move, we define rold = rj,k and denote the new proposed position

vector by rnew. We define Rnew
k = (r1,k, . . . , rj−1,k, rnew, rj+1,k, . . . , rN,k). The old and new

configurations read

x = {R0, . . . ,Rn−1} (2.83)

and

x′ = {R0, . . .Rk−1,R
new
k ,Rk+1, . . .Rn−1}, (2.84)
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respectively. Since the time slice index k is fixed, only the ρ0(Rk′ ,Rk′+1; τ) with k′ = k and

k′ = k− 1 are modified during the move. Moreover, only the bead corresponding to particle

j is changed. Correspondingly, we only need to consider those pieces of ρ0(x) that depend

on rj,k, rj,k−1, and rj,k+1. We thus write

ρ0(x) ∝ exp

(
−(rj,k − rj,k−1)2 + (rj,k − rj,k+1)2

4λmτ

)
(2.85)

or, rearranging the exponent,

ρ0(x) ∝ exp

(
− [rj,k − (rj,k−1 + rj,k+1)/2]2

2λmτ

)
. (2.86)

The right hand side of Eq. (2.86) is equal to a Gaussian whose mean value is given by the

midpoint of the (k− 1)-th and the (k+ 1)-th bead of the j-th particle and whose variance is

λmτ . To generate configurations according to the Gaussian guiding function g(x) = ρ0(x),

we choose the proposal distribution G(x→ x′) to be

G(x→ x′) ∝ exp

(
− [rnew − (rj,k−1 + rj,k+1)/2]2

2λmτ

)
. (2.87)

Note that the right hand side of Eq. (2.87) involves only rnew and not rold. Combining

Eqs. (2.87) and (2.86), the detailed balance condition [Eq. (2.71)] is satisfied if we choose

ρ0(x) as the probability distribution π(x) and G(x → x′) as the transition probability

P (x → x′). This implies that the proposal distribution G(x → x′) given in Eq. (2.87)

does generate samples according to g(x). The wiggle move (i.e., the proposal distribution)

generates configurations for which the bead rnew is completely independent of the previous

bead rold. In the non-interacting limit, the wiggle move is the best single-bead move because

the acceptance ratio is 1 and the correlations are minimized. In this case, the single-bead

move is analogous to the direct sampling for that bead.
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The single-bead version of the wiggle move can be generalized to multiple consecutive

beads. Since the multi-bead move leads to a deformation of a segment of the path, the move

is called “wiggle move”. Our discussion follows Ref. [133]. We propose to change a path

segment consisting of multiple beads according to ρ0(x) instead of a single bead of the path.

We denote the time slice indices of the two ends that are unchanged by k and k + s, where

s is an integer power of 2. The case s < 0 can be avoided by relabeling the beads, i.e., by

choosing a different starting point of the path. The corresponding position vectors are rj,k

and rj,k+s. As in the single-bead move, only a subset of the terms contributing to ρ0(x) is

changed during the move. The terms affected by the moves are included in Eq. (2.88) while

those not affected are not written explicitly. We have

ρ0(x) ∝ exp

(
−(rj,k − rj,k+s)

2

4sλmτ
τ

)
︸ ︷︷ ︸

constant

×

exp

(
−

(rj,k+s/2 − r̄j,k,k+s)
2

sλmτ

)
︸ ︷︷ ︸

zeroth level

×

exp

(
−

(rj,k+s/4 − r̄j,k,k+s/2)2

sλmτ/2

)
exp

(
−

(rj,k+3s/4 − r̄j,k+s/2,k+s)
2

sλmτ/2

)
︸ ︷︷ ︸

first level

×

. . . , (2.88)

where r̄j,α′,β′ = (rj,α′ + rj,β′)/2. If s is equal to 2l, Eq. (2.88) contains l levels (the zeroth

level is counted as one level but the constant term is not). Equation (2.88) suggests that the

sampling can be done level by level. For example, for a path segment consisting of 3 time

slices (s = 4), the beginning bead is rj,0 and the ending bead is rj,4. Thus, there exist two

levels in total. We propose the new midpoint bead rnew
j,2 according to the zeroth level term in

Eq. (2.88) and then the new midpoint beads rnew
j,1 and rnew

j,3 according to the first level term

in Eq. (2.88).

We outline a basic version of the multi-bead move first. The “staging version” will be
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discussed in a second step. The basic version of the algorithm is less efficient but can be

employed in connection with the Trotter formula and the pair product approximation. The

staging version can only be used in connection with the Trotter formula. For each level, we

generate new position vectors using the proposal distribution given in Eq. (2.87) with the

subscripts k−1 and k+1 adjusted accordingly. Note that the Gaussian proposal distribution

for each new position vector depends only on the position vectors of the next lower level. This

procedure generates a proposed new path segment {rnew
j,k+1, . . . , r

new
j,k+s−1}, which is completely

independent of the old path segment {rj,k+1, . . . , rj,k+s−1}. We denote the time slices that

are involved by Rnew
q , where q ranges from k+ 1 to k+ s−1. Using the second-order Trotter

formula, a(x) is given by Eq. (2.82) and we accept or reject using the acceptance distribution

A(x→ x′) given in Eq. (2.77). In this case, Eq. (2.77) can be simplified to

A(x→ x′) = min

(
1,

k+s−1∏
q=k+1

exp[−τV (Rnew
q )]

exp[−τV (Rq)]

)
. (2.89)

Combining the multi-bead sampling discussed in the previous paragraph with the staging

algorithm, which allows one to reject the move in advance if “bad points” are drawn, a more

efficient sampling scheme can be obtained [133]. The “in advance rejection” is checked for

at each level l. Let us assume that we are considering level l with the new midpoint beads

rnew
j,k+s(1+2q)/2l+1 , where q ranges from 0 to l + 1. Using the second-order Trotter formula, the

move is accepted or rejected based on

Apartial = min

(
1,

l+1∏
q=0

exp[−τV (Rnew
k+s(1+2q)/2l+1)]

exp[−τV (Rk+s(1+2q)/2l+1)]

)
. (2.90)

If Apartial is smaller than a random number drawn uniformly from the interval [0,1], the move

is rejected at the l-th level and the new configuration is set equal to the old configuration;

otherwise, the move is accepted. If the move is accepted at the l-th level, we go to the

(l + 1)-th level and repeat the procedure. If the final level is reached and the new proposed
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Figure 2.10: Illustration of the wiggle move for a single particle in a one-dimensional
harmonic trap. Black and red circles depict the old and proposed new configurations, re-
spectively. It is assumed that the construction of the new path segment was continued after
the construction of the first midpoint bead, the next two midpoint beads, and so on.

beads are accepted, then the entire path segment consisting of the proposed new beads

rnew
j,k+1, . . . , r

new
j,k+s−1 is accepted and a new configuration has been generated.

The “multi-bead sampling + staging” algorithm is equivalent to the basic multi-bead

algorithm, which proposes all the beads of the path segment considered first and then accepts

or rejects at the very end. The in advance rejection step (or the staged rejection) speeds

up the algorithm. Importantly, the staging algorithm only works if the Trotter formula is

used. If the pair product approximation is used, we need to reject at the very end because

the density matrix for consecutive time slices cannot be reorganized into different levels.

Figure 2.10 illustrates the wiggle move for a single particle in a one-dimensional harmonic

trap (k = 14 and s = 16). The new path is constructed as follows: A new midpoint bead

with index 22 is proposed and tested according to Eq. (2.90): If rejected (i.e., if the random

number generated is smaller than Apartial), the move is aborted in advance and the new

configuration is set to the old configuration; if not rejected, the construction of the new path

segment is continued (this is what is assumed in making Fig. 2.10). In the latter case, two

new midpoint beads with index 18 and 26 are proposed and tested simultaneously according
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to Eq. (2.90). If rejected, the move is aborted in advance and the new configuration is set

to the old configuration; if not rejected, four new midpoint beads with index 16, 20, 24, and

28 are proposed and tested simultaneously according to Eq. (2.90). If rejected, the move is

aborted in advance and the new configuration is set to the old configuration; if not rejected,

eight new midpoint beads with index 15, 17, 19, 21, 23, 25, and 29 are tested simultaneously

according to Eq. (2.90). If rejected, the move is ended with the new configuration being the

old configuration; if not rejected, we accept the move in its entirety and change the path

segment that involves the beads with index 15 to 29 to the new position vectors.

2.5.5 “Permute move”

The “permute” move is used to stochastically sample the permutations using the sym-

metrized density matrix given in Eq. (2.54). In this case, we need to change the sampling and

the calculation of the estimators a bit since the probability distribution π(x) involves a sum

over all possible permutations of products of density matrices. Accounting for permutations,

the probability distribution can be written as [see Eq. (2.54)]

π(x) =
∑
Pσ

sgn(Pσ)πPσ(x), (2.91)

where Pσ runs through all possible permutations and sgn(Pσ) denotes the sign of the permu-

tation. Specifically, sgn(Pσ) is equal to (−1)NIF(Pσ), where NIF(Pσ) denotes the number of

inversions of identical fermions in Pσ. Equation (2.91) also applies to bosonic systems since

the inversion of identical bosons does not introduce a sign flip. πPσ(x) represents a product

over density matrices,

πPσ(R0, . . . ,Rn−1) = ρ(R0,R1; τ) . . . ρ(Rn−2,Rn−1; τ)ρ(Rn−1, PσR0; τ). (2.92)
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For a single-component N particle system, Eq. (2.91) contains N ! terms and the function

NIF(Pσ) is identical to the function NI(Pσ) used in Eq. (2.36). The function NIF(Pσ) is more

general and ensures that Eq. (2.91) applies not only to single-component systems but also

to multi-component systems.

Rewriting Eq. (2.58) using Eq. (2.91), the observable reads

〈O〉 =
∑
Pσ

sgn(Pσ)
∫
x′
πPσ(x′)dx′∑

Pσ ′
sgn(Pσ

′)
∫
x′
πPσ ′(x

′)dx′︸ ︷︷ ︸
probability to be in permutation Pσ

∫
x

w(x)
πPσ(x)∫

x′
πPσ(x′)dx′

dx︸ ︷︷ ︸
contribution by permutation Pσ

. (2.93)

The general idea of treating the permutations is based on the following. We think of each

term in Eq. (2.91) as a separate probability distribution, from which we can calculate the

contribution to the observable [second part on the right hand side of Eq. (2.93)]. We then

calculate the relative importance of each permutation and weigh the contribution to the

observable accordingly [first part on the right hand side of Eq. (2.93)]. Note that the proba-

bility to be in permutation Pσ [first part on the right hand side of Eq. (2.93)] can be negative

because of the sgn functions. Hence, one needs to carefully keep track of the sign. The con-

tribution by permutation Pσ [second part on the right hand side of Eq. (2.93)], in contrast, is

always positive. The fact that the probability to be in permutation Pσ can be negative leads

to the well known Fermi sign problem [97, 99, 134, 135]. Readers are referred to Sec. 5.2.3

for a study that treats the signs explicitly.

The wiggle move and the naive move can be used to generate configurations according

to πPσ . An additional move, the permute move, is needed to calculate the probability to be

in the permutation Pσ [first part on the right hand side of Eq. (2.93)]. If we use Eq. (2.92)

as written, we always need to permute the initial beads since Pσ is applied to R0. While

this is formally correct, this tends to lead to low acceptance ratios in practice. To improve

the efficiency of the algorithm, we use that the permutation operator commutes with the

density matrix. This implies that Pσ can be applied to any time slice. This feature is used
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in the permute move. Instead of always applying Pσ to R0, Pσ is applied to Rk+s, where

k + s denotes the ending time slice (see the next paragraph for details).

The general idea of the permute move is that it proposes to change multiple consecutive

time slices of paths of two or more particles. The proposed change consists of a permutation

of the particle indices on one end. The simplest permute move is the 2-cycle permute move,

which involves two particles. Let the beginning and ending time slices be k and k + s, and

let the old configuration correspond to the identity permutation. We try to permute the first

and second particles. As in many other moves, we use the non-interacting density matrix as

our guiding function. Instead of permuting the zeroth time slice, we permute the (k + s)-th

time slice, write out ρ0,Pσ(x) for all particles, and reorganize the non-interacting density

matrix ρ0,Pσ(x) in a similar manner as in Eq. (2.88),

ρ0,Pσ(x) ∝
N∏
j=1

exp

(
−(rj,k − rPσj,k+s)

2

4sλmτ
τ

)
︸ ︷︷ ︸

T (Pσ)

×

N∏
j=1

exp

(
−

(rj,k+s/2 − r̃j,k,k+s)
2

sλmτ

)
︸ ︷︷ ︸

zeroth level

×

N∏
j=1

exp

(
−

(rj,k+s/4 − r̄j,k,k+s/2)2

sλmτ/2

)
exp

(
−

(rj,k+3s/4 − r̃j,k+s/2,k+s)
2

sλmτ/2

)
︸ ︷︷ ︸

first level

×

. . . , (2.94)

where the average r̃j,k,k+s (note the “tilde”), which involves the ending time slice k + s, is

defined to be (rj,k + rPσj,k+s)/2. The averages r̄j,α,β (note the “bar”), which do not involve

the ending time slice k+ s, are defined below Eq. (2.88). The term T (Pσ) on the right hand

side of Eq. (2.94) can be used to permute the particles, i.e., be used to calculate the relative

probability of ρ0,Pσ(x) for different Pσ. In practice, we construct a table of T (Pσ) for all
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Figure 2.11: Illustration of the permute move for two particles in a one-dimensional har-
monic trap. Black and red circles depict the old and proposed new configurations, respec-
tively.

possible permutations Pσ. In the case of two particles, we have T (1) and T (P12) and the

permute move is accepted with the probability pP12 ,

pP12 =
T (P12)

(T (1) + T (P12))
. (2.95)

If the move is accepted, we go to the second stage of the permute move, which samples

the midpoint beads of all involved particles at time slice index k + s/2 (this is similar to

the wiggle move). The process is continued until the last level is reached. At any stage

if the move is rejected, we abort the move. The outlined scheme can be generalized to a

permutation cycle of arbitrary length and for an arbitrary number of particles [133].

Figure 2.11 illustrates the permute move for two particles in a one-dimensional harmonic

trap. In the example, k = 16 and s = 4 and the old permutation corresponds to the identity

permutation. The time slices at indices 16 and 20 are cut open. A probability to permute

the path is calculated according to Eq. (2.95). If rejected (i.e., the random number generated

is larger than pP12), the old configuration is kept as the new configuration; otherwise, the

permute move is continued by constructing two new paths that connect the beads r1,16 and

r2,20, and r2,16 and r1,20 similar to the wiggle move. We denote the time slices that are changed

by Rnew
q , where q ranges from 17 to 19. We accept or reject the entire move according to
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Eq. (2.89). If the second-order Trotter formula is used, this scheme can be combined—as in

the wiggle move—with the staging algorithm. In this case, we construct the position vectors

rnew
1,18 (generated from a Gaussian distribution with mean (r1,16 + r2,20)/2 and variance 2λmτ)

and rnew
1,18 (generated from a Gaussian distribution with mean (r2,16 + r1,20)/2 and variance

2λmτ). We accept or reject at this stage according to Eq. (2.90) with l = 0. If rejected, we

abort the move and set the new configuration equal to the old configuration. If accepted, we

go on to the next level. In this case, we construct the position vectors rnew
1,17 (generated from

a Gaussian distribution with mean (r1,16 + r1,18)/2 and variance λmτ), rnew
1,19 (generated from

a Gaussian distribution with mean (r1,18 + r2,20)/2 and variance λmτ), rnew
2,17 (generated from

a Gaussian distribution with mean (r2,16 + r2,18)/2 and variance λmτ), and rnew
2,19 (generated

from a Gaussian distribution with mean (r2,18 + r1,20)/2 and variance λmτ). This final level

is tested against Eq. (2.90) with l = 1. If rejected, we abort the move and set the new

configuration equal to the old configuration; otherwise, we accept the move and update the

configuration.

If the permute move is accepted at all stages, we need to change the status of the permu-

tation of the path. Now, the beads {r1,0, . . . , r1,16, r
new
1,17, r

new
1,18, r

new
1,19, r2,20, . . . , r2,31} belong to

particle 1 and the beads {r2,0, . . . , r2,16, r
new
2,17, r

new
2,18, r

new
2,19, r1,20, . . . , r1,31} belong to particle 2.

The reason for switching the particle indices starting at time slice k + s (here k + s = 20) is

that we started the permute move with a permutation at the (k + s)-th time slice and that

we need to obtain/end up with a path—according to the convention in Eq. (2.54)—that is

permuted at the zeroth time slice. If one used the worm algorithm [102], this would not be

needed since the worm algorithm also stores the single-particle links. Permute moves then

only need to reconnect single-particle links.

Equation (2.91) contains N ! terms for a single-component system. However, only

Partition(N) number of distinct terms exist (for example, the probability distribution

πP12(x) and πP13(x) are the same if one swaps the dummy particle indices 2 and 3), where
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(a) (b) (c)

Figure 2.12: Young diagrams for (a) the 3-cycle permutation, (b) the 2-cycle permutation,
and (c) the identity permutation.

Partition(N) is the number of unrestricted partitions of integer N [136]. For N = 1 to 12,

Partition(N) is equal to 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, and 77. The Partition(N) function

is closely related to Young diagrams. A Young diagram is a diagram with n boxes arranged

in n or fewer rows in such a way that the number of boxes in the ith row is less than that

in the (i − 1)th row. For N identical particles, the number of possible Young diagrams is

Partition(N). Rows that contain more than one box correspond to a permutation cycle. For

example, P12 is a 2-cycle permutation and P123 is a 3-cycle permutation. The number of rows

that contains k boxes is denoted as ak. Each Young diagram represents n!/(
∏n

k=1 ak!k
ak)

permutations that contribute equally to π(x). For example, for three particles, there are

three different Young diagrams (see Fig. 2.12). The diagram shown in Fig. 2.12(a) (with

a3 = 1 and a1 = a2 = 0) represents the 3-cycle permutations P123 and P132. These two per-

mutations contribute equally, i.e., πP123(x) = πP132(x). The diagram shown in Fig. 2.12(b)

(with a2 = 1, a1 = 1, and a3 = 0) represents the 2-cycle permutations P12, P13, and, P23.

These three permutations contribute equally, since πP12(x), πP13(x), and πP23(x) are equal.

The diagram shown in Fig. 2.12(c) (with a1 = 3 and a2 = a3 = 0) represents the identity

permutation. In our current implementation, the reduction from N ! to Partition(N) terms is

not used. It seems that using the reduction could result in a more efficient algorithm. Indeed,

Refs. [137, 138] do seem to employ ideas along these lines. We envision that an improved

algorithm can be devised based on the following. If one monitored the probability to be in

each permutation status and compared the probabilities for equivalent permutations, one
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might be able to get a sense of the accuracy of the permute move and hence the algorithm.

Furthermore, treating each set of equivalent permutations separately could help to reduce

the sign problem (see Ref. [139] for ideas along this line).

If one uses the symmetrized density matrix, Eq. (2.55), the permute move is not needed.

If fermions are involved, π(x) can be negative even though Z is positive definite. As in the

permute move, the sign needs to be taken into account when calculating observables.

2.5.6 “Pair distance move”

The “pair distance” move is employed in systems with two-body zero-range interactions.

Its use is especially important if the two-body s-wave scattering length diverges. The key

motivation is that two particles can, if zero-range interactions are present, be close to each

other or even on top of each other. Traditional moves such as the wiggle move and the

naive move do, however, not generate configurations in which particles sit on top of each

other. The reason is that the scaled pair distribution function 4πr2P12(r) for non-interacting

particles or for uniformly distributed particles is zero at r = 0, implying that configurations

with vanishing pair distance are not generated by the traditional moves. The pair distance

move involves two particles with the same time slice index. The proposed move keeps the

center of mass of the particle pair unchanged and modifies the relative distance. The details

of the pair distance move can be found in Ch. 6.

2.5.7 “Whole path move”

At infinite temperature, the path of each particle shrinks to a single point because the density

matrix becomes a δ-function [see Eq. (2.9) and the discussion in the context of Figs. 2.2 and

2.3]. This means that the single-bead or multi-bead moves have a zero acceptance ratio.

Moves that update the entire path, in contrast, have—in general—a finite acceptance ratio.

This suggests that at high temperature, a move that updates the entire path of a particle is
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Figure 2.13: Illustration of the whole path move for a single particle in a one-dimensional
harmonic trap. Black and red circles depict the old and new configurations, respectively.

necessary and efficient.

The whole path move proposes a new configuration by displacing the entire path of a

single particle by δr, where δr is—as in the naive move—chosen uniformly from a pre-set

window. Figure 2.13 illustrates the whole path move for a single particle in a one-dimensional

harmonic trap. The proposed path is identical in shape to the old path but shifted by δr

(in this one-dimensional example, δr is a scalar; in three-dimensional space, δr has three

components).

The ratio between the new probability distribution π(x′) and the old probability dis-

tribution π(x) is used to to determine whether to accept or reject the move. The move is

accepted if A(x→ x′),

A(x→ x′) = min

(
1,
π(x′)

π(x)

)
, (2.96)

is larger than a random number that is uniformly drawn from the interval [0, 1] and rejected

otherwise. If the Trotter formula is used, one only needs to recalculate the terms involving the

potential energy; the kinetic energy terms, which sit at the links and depend on rk,j− rk,j−1,

are unchanged. Since the “whole path” move is typically used at high temperature, the

number of time slices is comparatively small. This means that the number of operations

involved in generating a new path is manageable despite the fact that the update involves

the entire path.
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2.5.8 “Center-of-mass move”

The “center-of-mass move” is motivated by the fact that the center-of-mass and relative

Hamiltonian of some systems are not coupled at all or effectively decoupled. For example, for

particles in a harmonic trap or in free space, the center-of-mass portion of the Hamiltonian

decouples and can be treated as an effective single-particle Hamiltonian. The center-of-

mass move efficiently explores the center-of-mass degrees of freedom. The center-of-mass

degrees of freedom can be sampled efficiently using the multi-slice wiggle move for a single

pseudoparticle with total massNm. The steps can be summarized as follows: i) Calculate the

center-of-mass coordinates for the time slices to be updated (time slices k+1 to k+s−1). ii)

Generate new center-of-mass coordinates for time slices k+1 to k+s−1 using the multi-bead

wiggle move. iii) Shift the beads for time slices k+1 to k+s−1 according to the new center-

of-mass coordinates. Proposing center-of-mass moves every now and then helps to reduce

the correlations between configurations. In cases where the relative degrees of freedom are

largely “frozen”, other moves can have a small acceptance ratio or may only change the path

by a small amount while the center-of-mass move may have a large acceptance ratio, thereby

helping with the exploration of the entire configuration space.

2.6 Estimators

In the previous two sections, we derived approximate expressions of the unsymmetrized den-

sity matrix, discussed Monte Carlo methods to generate the configurations x, and introduced

two different approaches to treat permutations. Looking at Eq. (2.58), having a proper form

for the weight function w(x) is the only missing ingredient to complete the PIMC algorithm.

This section derives expressions for the weight function w(x) for selected observables. Ex-

plicit expressions for w(x) can be derived for many observables using either thermodynamic

relations [such as Eq. (2.6)] or the quantum estimator relation [Eq. (2.8)],
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The expectation value 〈f(x)〉 of a function f(x) with respect to the probability density

function p(x) is defined as

〈f(x)〉 =

∫
x

f(x)p(x)dx. (2.97)

In the PIMC algorithm, we generate a finite sequence X of configurations xj,

X = {x1,x2, . . . ,xM}, (2.98)

according to the probability distribution π(x). The expectation value 〈O〉 of the observable

[Eq. (2.58)] can then be estimated by the mean value Ō of the series X,

Ō = 〈O〉X =
M∑
j=1

w(xj)/M. (2.99)

In the limit M →∞, the mean value Ō approaches the expectation value 〈O〉.

According to the central limit theorem, the mean value Ō of the series X approaches

the expectation value 〈O〉 in a predictive manner. The central limit theorem states that

the mean of a sufficiently large number of random samples drawn from a distribution with

a well-defined mean value and variance, is approximately normally distributed. A stronger

version of the central limit theorem exists for Markov chains (i.e., for a series of data that

is correlated for small lag and uncorrelated for large lag) [140]. To apply the central limit

theorem to the PIMC samples w(xj), we divide the series X into L groups, each with

l = M/L configurations. Defining the block averages

Sk =

(k+1)×l∑
j=k×l+1

w(xj)/l, (2.100)

we construct the series {S1, . . . , SL}. Provided l is sufficiently large, the block averages Sk

are normally distributed and the variance σ2 of the block averages can be estimated without
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bias from the sample variance 〈σ2〉X ,

〈σ2〉X =
L∑
j=1

(Sj − S̄)/(L− 1), (2.101)

where

S̄ =
L∑
j=1

Sj/L = Ō. (2.102)

In our simulations, we use the sample standard deviation of the block averages divided by

the number of block averages, i.e.,

〈σŌ〉X =

√
〈σ2〉X
L

, (2.103)

to estimate the error of the expectation value 〈O〉. That is, we report the mean Ō with error

〈σŌ〉X . Considering Q simulations, each yielding a series Xj and correspondingly
√
〈σ2〉Xj

(assuming finite L), the estimate of the standard deviation is biased because the mean value

of a square root function is not equal to the square root of the mean, i.e.,

∑Q
j=1

√
〈σ2〉Xj

Q
6=

√∑Q
j=1 〈σ2〉Xj
Q

. (2.104)

Since the bias becomes negligible for sufficiently large L, there is no need to correct for

the bias. In our simulations, we typically set L to be 80 for each processor. Because

the {S1, . . . , SL} are normally distributed, the variance 〈σ2〉X is approximately a constant

for sufficiently large L. This implies that the error 〈σŌ〉X scales as 1/
√
L according to

Eq. (2.103). Thus, to improve the accuracy of an observable by an order of magnitude, the

computational time needs to be increased by two orders of magnitude.

To check whether the final distribution is approximately normal, one can make a his-

togram of the observable under study. Figure 2.14 shows the histogram for an observable
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Figure 2.14: Histogram of samples of an observable O [the ratio of the partition function of
the non-interacting (3,1) system and the partition function of the (3,1) system at unitarity
at β~ω = 0.7]. The simulation is done on 480 processors and each processor produces 80
samples. The red solid line shows the unnormalized normal distribution with mean value
0.658547 and standard deviation 0.00415146.

discussed in detail in Ch. 8, namely the ratio of the partition function of the non-interacting

(3,1) system and the partition function of the (3,1) system at unitarity at β~ω = 0.7. The

notation (3,1) refers to three spin-up fermions and one spin down fermion under external har-

monic confinement. The simulation is done on 480 processors and each processor produces 80

samples. This means that the histogram in Fig. 2.14 is constructed using 480× 80 = 38, 400

samples. The sample mean is 0.658547 and the sample variance is 0.0000172346 (the sample

standard deviation is 0.00415146). Using the calculated mean and variance, the solid line

in Fig. 2.14 shows the corresponding normal distribution. It can be seen that the solid line

provides a faithful description of the histogram, indicating that the underlying samples are

indeed normally distributed. The presented analysis requires a large number of block aver-

ages. In practice, it may not be feasible or advisable to obtain many block averages. In such

a case, one can check if the error scales as
√

1/L. Reducing the number of block averages

by a factor of two, one should observe that, if the block averages are normally distributed,

the error increases roughly by a factor of
√

2. This check can be performed for as few as 5 or

10 block averages and provides, in many cases, enough information to reliably assign error

bars.

To check explicitly whether the samples are independent, one needs to perform autocor-
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Figure 2.15: Correlation coefficient rk as a function of the lag k for the sample and observable
considered in Fig. 2.14. The results for a single processor are considered, i.e., a series of 80
data points is analyzed. The upper and lower solid lines show the 95% confidence interval.

relation tests. Figure 2.15 shows the correlation coefficient rk [Eq. (2.62) for M = 80] for

a single processor (i.e., a series of 80 data points) as a function of the lag k for the system

and observable considered in Fig. 2.14. Since the correlation coefficients lie all within the

confidence band, we say that the data pass the autocorrelation test. Similar results are

obtained for the data generated by the other 479 processors. This verifies that the samples

are truly independent.

2.6.1 Energy estimator

The energy, which can be calculated in PIMC simulations, is a key quantity in understanding

the thermodynamics of a system. The literature discusses a number of different energy

estimators [19]. In the following, we discuss a few of these. Using the thermodynamic

relation, Eq. (2.6), and plugging in one of the approximate expressions for the density matrix,

an explicit expression for the weight function w(x) can be derived.

As an example, we derive the thermodynamic energy estimator for the second-order Trot-

ter formula, Eq. (2.23), for particles without permutations. Using Eq. (2.22), the partition
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function Z reads

Z =

∫
R0

. . .

∫
Rn−1

ρ(R0,R1; τ) . . . ρ(Rn−1,Rn; τ)dR0 . . . dRn−1 (2.105)

=

∫
R0

. . .

∫
Rn−1

ρ0(R0,R1; τ) . . . ρ0(Rn−1,Rn; τ)×

exp

(
−τ

n−1∑
j=0

V (Rj)

)
dR0 . . . dRn−1, (2.106)

where Rn = R0 and ρ0 is defined in Eq. (2.11). Note that the second-order Trotter formula

gives the same result for Z as the first-order Trotter formula since Z can be written in terms

of the diagonal part of the density matrix. If the off-diagonal parts of the density matrix are

needed, such as in PIGS simulations or simulations involving open paths, special care needs

to be taken in evaluating terms that depend on the two open ends. Taking the derivative

with respect to β on both sides of Eq. (2.106), dividing by −Z, and using the relation β = nτ ,

we arrive at

〈ET 〉 =− 1

Z

∂Z

∂β
(2.107)

=− 1

Z

∫
R0

. . .

∫
Rn−1

1

n
×

∂

∂τ

(
ρ0(R0,R1; τ) . . . ρ0(Rn−1,Rn; τ) exp

(
−τ

n−1∑
j=0

V (Rj)

))
dR0 . . . dRn−1.

(2.108)

Combining Eqs. (2.57) and (2.23), we recognize that Eq. (2.108) can be rewritten in terms

of π(x),

〈ET 〉 = − 1

Z

∫
x

1

n

∂

∂τ
π(x)dx. (2.109)
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Applying the chain rule to evaluate ∂π(x)/∂τ , we obtain

〈ET 〉 =
1

Z

∫
x

1

n

n−1∑
j=0

(
3N

2τ
− (Rj −Rj+1)2

4λmτ 2
+ V (Rj)

)
π(x)dx. (2.110)

Comparing Eqs. (2.110) and (2.58), we obtain

w(x) =
1

n

n−1∑
j=0

(
3N

2τ
− (Rj −Rj+1)2

4λmτ 2
+ V (Rj)

)
. (2.111)

Equation (2.111) can be evaluated straightforwardly for any configuration x.

Using the quantum estimator relation, Eq. (2.8), an alternative energy estimator can be

derived. Here, we derive the quantum energy estimator for particles without permutations

using the second-order Trotter formula as an example. The position representation of the

Hamiltonian Ĥ reads [35]

〈R|Ĥ|R′〉 = HRδ(R−R′) = [−λm∇2
R + V (R)]δ(R−R′). (2.112)

Using Eq. (2.112) and inserting a closure relation [Eq. (2.13) with R = R′′],

〈R| exp(−τĤ)Ĥ|R′〉 can be written as

〈R| exp(−τĤ)Ĥ|R′〉 =

∫
R′′
〈R| exp(−τH)|R′′〉 〈R′′| exp(−τH)|R〉 dR′′ (2.113)

=

∫
R′′
ρ(R,R′′; τ)[−λm∇2

R′′ + V (R′′)]δ(R′′ −R′)dR′′. (2.114)

Applying integration by parts twice to Eq. (2.114), we obtain

〈R| exp(−τĤ)Ĥ|R′〉 =

∫
R′′
δ(R′′ −R′)[−λm∇2

R′′ + V (R′′)]ρ(R,R′′; τ)dR′′ (2.115)

= [−λm∇2
R′ + V (R′)]ρ(R,R′; τ). (2.116)
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Inserting the closure relation [Eq. (2.13)] n− 1 times into Eq. (2.8) with Ô = Ĥ, we obtain

〈EH〉 =
Tr
[(∏n

j=1 e
−τĤ

)
Ĥ
]

Z
(2.117)

=− 1

Z

∫
R0

. . .

∫
Rn−1

ρ(R0,R1; τ)ρ(R1,R2; τ) . . . ρ(Rn−2,Rn−1; τ)×

{[−λm∇2
R0

+ V (R0)]ρ(Rn−1,R0; τ)}dR0 . . . dRn−1. (2.118)

Applying the second-order Trotter formula [Eq. (2.23)] to Eq. (2.118), we obtain

〈EH〉 =

∫
x

(
3N

2τ
− (R0 −Rn−1)2

4λmτ 2
+ V (R0)− (R0 −Rn−1) · ∇R0V (R0)

+ λmτ∇2
R0
V (R0)− λmτ 2(∇R0V (R0))2

)
π(x)dx. (2.119)

Because Ĥ commutes with the density matrix, Ĥ can be applied to any time slice. Aver-

aging over all time slices to improve the accuracy (i.e., to take more measurements for each

configuration), we obtain

〈EH〉 =

∫
x

1

n

n−1∑
j=0

(
3N

2τ
− (Rj −Rj+1)2

4λmτ 2
+ V (Rj)− (Rj −Rj+1) · ∇Rj

V (Rj)

+ λmτ∇2
Rj
V (Rj)− λmτ 2(∇Rj

V (Rj))
2

)
π(x)dx, (2.120)

where Rn = R0. Comparing Eqs. (2.120) and (2.58), we obtain

w(x) =
1

n

n−1∑
j=0

(
3N

2τ
− (Rj −Rj+1)2

4λmτ 2
+ V (Rj)− (Rj −Rj+1) · ∇Rj

V (Rj)

+ λmτ∇2
Rj
V (Rj)− λmτ 2(∇Rj

V (Rj))
2

)
. (2.121)

Compared to Eq. (2.111), Eq. (2.121) contains three extra terms in the sum. In the n→∞

limit, both estimators approach the true expectation value. However, for finite n, the two
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generally give different estimates of the energy. For example, Fig. 6.5 shows the thermody-

namic energy estimator as a function of the time step τ . To obtain accurate results, one

needs to extrapolate the finite τ calculations to the zero time step limit. If accuracy is not

crucial, the difference between the two estimators for a single τ may be used as an estimate

of the systematic error [19].

Other energy estimators such as the virial estimator, which originates from the virial

theorem [19], exist.

2.6.2 Structural properties

Structural properties such as the single, pair, and triple distribution functions can be ob-

tained from the diagonal term of the density matrix in position space. Compared to the

energy estimator, the determination of w(x) for structural properties is much more straight-

forward. For example, the operator D̂2(r) for obtaining the scaled pair distribution function

4πr2P12(r), which is normalized according to
∫∞

0
4πP12(r)r2dr = 1, between particle 1 and

2 can be expressed as D̂2(r) = δ(|r1 − r2| − r). This expression can be inserted into the

quantum estimator and w(x) can be derived. In PIMC simulations, the diagonal term of

the density matrix corresponds to the information carried by the time slices. Since all time

slices are equivalent, we can treat the information of all time slices on equal footing and

accumulate the weight of the structural properties according to all time slices Rj. Simi-

lar to the stochastic evaluation of structural properties for zero-temperature wave function,

the δ-function in the operator D̂2(r) amounts to sorting the distribution into finite spaced

windows and counting the number of configurations that fall into each of the windows.

For example, to obtain the scaled pair distribution function 4πr2P12(r) for two particles

in a harmonic trap, we discretize the pair distance r12, r12 = |r1 − r2|, into a series of kmax

bins, [kδr, (k + 1)δr], where k range from 0 to kmax − 1. During the simulation, the pair

distance is calculated for several configurations and sorted into the bins, i.e., a histogram
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of the pair distances is collected. For each configuration considered (note, we may skip

configurations to ensure that the samples collected have small correlations), the pair distance

r12 is calculated for each time slice Rj (j = 0, . . . , n−1). The bin number l of the histogram

is calculated by evaluating l = Floor(r12/δr), where Floor(x) gives the largest integer smaller

or equal to x, and the histogram value vl of the l-th bin is increased by one. At the end,

the histogram defined by the vl is normalized by dividing by the total number Bt of pair

distances considered and the bin size δr. The histogram created is a discretized version of

the scaled pair distribution function 4πr2P12(r). Importantly, the approach outlined yields

the correct normalization even if some pair distances generated during the simulation are

larger than jmaxδr. We typically monitor how many distances cannot be sorted into the

histogram by comparing
∑

l vl with Bt. If the fraction is too large, then the “cutoff” jmaxδr

needs to be increased.

Because the process involved in calculating different structural properties such as the pair

distribution function and triple distribution function is the same, the data structure used to

accumulate different distribution functions and the accumulating process can be described by

a single class in object oriented programming languages. This avoids duplication of the code.

In the code, we construct the desired estimator (the “object”) such as the pair distribution

estimator and the triple distribution estimator according to the same class but initialize

with observable specific parameters such as the bin size, the bin number, and the number

of particles. To accumulate the weight and finalize the results, we call the same virtual

methods for different estimators. The actual implementation for these virtual methods may

or may not be the same for different estimators. For example, in my code, the scaled pair and

scaled triple distribution functions share the same implementation since both are described

by an operator of the form δ(rref − r), where rref is either the pair distance or the tree-

body hyperradius. The (unscaled) pair distribution function, in contrast, is described by an

operator of the form 1
4πr2

δ(rref − r) and implemented separately.
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2.7 Brief summary

All ingredients needed to perform a PIMC simulation have now been discussed. In this

section, we combine the ingredients and sketch the PIMC algorithm.

1. Initialization.

(a) Read in parameters such as the temperature, the number of time slices, the num-

ber of particles, . . . and initialize everything including the random number seeds.

The seeds should be different and uncorrelated for different processors if the pro-

gram is run in parallel.

(b) Read in or generate an initial configuration x. The generation of an initial con-

figuration could be done semi-randomly (coordinates are chosen randomly from

a pre-defined window). An initial configuration is “good” if the corresponding

probability distribution π(x) is large.

2. Equilibration (if the initial configuration was obtained from a previous, equilibrated

simulation, the equilibration step is not needed). Update the initial configuration

until the new configuration has no memory of the initial configuration. The new

configurations are generated using the moves discussed in Secs. 2.5.3-2.5.8. It is not

always clear a priori which moves are efficient and which ones are not; while some

intuition can be developed based on physical arguments, in general, the simulator has

to explore the efficiency of the various moves by “trial and error”. In practice, the

length of the equilibration process can be estimated by analyzing the autocorrelation

of selected estimators. During the equilibration process, estimators typically “curve”

toward the true expectation value with increasing simulation time. It is important

to be aware that the convergence rate toward the true expectation value can be very

different for different estimators.

3. Accumulation of expectation values (“measurement”).
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(a) Update the configuration using the moves discussed in Secs. 2.5.3-2.5.8. Each type

of move is used multiple times and the number of moves is adjusted to ensure that

the configurations used for calculating the estimators have small correlations.

(b) Apply the estimators and accumulate expectation values.

(c) Repeat steps (a) and (b) for L times to get a list of block averages {S1 . . . SL} of

the expectation values for each estimator.

4. Finalization. Determine the mean and error for each observable using Eqs. (2.99) and

(2.103). Save the final configuration for use in future simulations.

The algorithm outlined is for a fixed time step τ (or a fixed number of time slices n).

For observables like the energy, we need to perform PIMC simulations for different τ and

extrapolate to the zero τ limit. For observables like the structural properties, we usually

simulate at a sufficiently small time step and check the error due to the finite time step by

comparing the structural properties for different time steps. The reason for bypassing the

extrapolation process is that the convergence for different bins is different and, in general,

needs to performed separately for each bin.
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Chapter 3

Harmonically trapped Fermi gas:

Temperature dependence of the Tan

contact

by Yangqian Yan1 and D. Blume1,2
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2ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge,
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Ultracold atomic gases with short-range interactions are characterized by a number of

universal species-independent relations. Many of these relations involve the two-body Tan

contact. Employing the canonical ensemble, we determine the Tan contact for small harmon-

ically trapped two-component Fermi gases at unitarity over a wide range of temperatures,

including the zero and high temperature regimes. A cluster expansion that describes the

properties of the N -particle system in terms of those of smaller subsystems is introduced
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and shown to provide an accurate description of the contact in the high temperature regime.

Finite-range corrections are quantified and the role of the Fermi statistics is elucidated by

comparing results for Fermi, Bose and Boltzmann statistics.

3.1 Harmonically trapped Fermi gas: Temperature de-

pendence of the Tan contact

Systems with short-range interactions are characterized by universal relations that are inde-

pendent of the details of the underlying interactions. The Tan contact [49–51, 141, 142], e.g.,

enters into a large number of universal relations and connects physically distinct quantities

such as the large momentum tail, the inelastic loss rate, the number of pairs with small

interparticle distances, and certain characteristics of radio frequency (rf) spectra. A striking

feature of many of the universal relations is that they apply to homogeneous and inhomoge-

neous systems at zero and finite temperature. Yet, although many universal relations that

evolve around the Tan contact are known, only a few explicit measurements [52–56] and cal-

culations [57–67] of the Tan contact exist. For example, the dependence of the Tan contact

of the spin-balanced homogeneous two-component Fermi gas at unitarity on the tempera-

ture is highly debated. While some studies predict a monotonic decrease of the contact with

increasing temperature, others predict a non-monotonic dependence.

Recently, small trapped atomic Fermi gases have been prepared experimentally [91, 93],

motivating theoretical studies of few-fermion systems as a function of the temperature. While

the contact of large harmonically-trapped spin-balanced two-component Fermi gases is pre-

dicted to decrease monotonically with increasing temperature, the behavior of few-atom

systems is largely unexplored. As we will show in this work, such studies provide a detailed

qualitative understanding of the temperature dependence of the contact, while at the time

establishing accurate benchmarks.
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This paper considers small Fermi gases consisting of N1 spin-up and N2 spin-down

fermions under external spherically symmetric harmonic confinement. Working in the canon-

ical ensemble, we determine the Tan contact at unitarity with an accuracy at the few percent

level as a function of the temperature, including the low (near zero) temperature regime and

the high temperature regime. Our main findings are: (i) We devise a cluster expansion in the

canonical ensemble that describes the high temperature tail of the Tan contact accurately.

This expansion assumes a fixed number of particles and is thus, unlike the virial expan-

sion [88, 89, 143, 144], applicable to small and large systems. The cluster expansion can be

applied to any thermodynamic observable calculated in the canonical ensemble. (ii) While

the contact of the trapped (N1, N2) = (1, 1) and (2, 2) systems is maximal at T = 0, that of

the (2, 1), (3, 1) and (4, 1) systems shows a maximum at finite temperature. A microscopic

interpretation of this behavior is offered. (iii) For the cases studied, the contact shows a

non-negligible dependence on the range r0 of the underlying two-body potential at low tem-

perature; in the high temperature regime, in contrast, the range dependence is negligible.

(iv) Fermi statistics plays a role at temperatures where three-body physics is non-negligible.

The role of the Fermi statistics is elucidated by turning the exchange symmetry off and by

switching to Bose statistics.

The two-component Fermi gas consisting of N atoms with mass m and position vectors

rj (j = 1, · · · , N) is described by the model Hamiltonian H,

H =
N∑
j=1

(
−~2

2m
∇2
j +

1

2
mω2r2

j

)
+

N1∑
j=1

N∑
k=N1+1

Vtb(rjk), (3.1)

where ω denotes the angular trapping frequency. We consider two different interspecies

two-body potentials Vtb, a regularized zero-range pseudopotential VF [3] and a short-range

Gaussian potential VG with depth U0 (U0 < 0) and range r0, VG(rjk) = U0 exp[−r2
jk/(2r

2
0)].

For a given r0, we adjust U0 such that VG supports a single zero-energy s-wave bound state

in free space, i.e., such that the s-wave scattering length as diverges. Our calculations use
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r0 � aho, where aho is the harmonic oscillator length, aho =
√

~/(mω). This paper considers

temperatures ranging from T = 0 to kBT � Eho, where Eho = ~ω. The largest temperatures

considered are chosen such that the two-body interactions can be reliably parametrized by

the s-wave scattering length and corresponding effective range correction, i.e., so that higher

partial wave contributions in the two-body sector can be neglected.

To determine the Tan contact CN1,N2 , we employ the adiabatic and pair relations,

CN1,N2 =
4πm

~2

〈
∂E(as)

∂(−a−1
s )

〉
th

(3.2)

and

CN1,N2 = 4π lim
s→0

〈N r<s
pair 〉th
s

; (3.3)

here, the 〈·〉th notation indicates a thermal average and E(as) denotes the energy of the

system. The quantity N r<s
pair is the number of pairs with interspecies distances smaller than

s. For zero-range interactions, s is taken to zero. For finite-range interactions, in contrast,

s goes to a small value such that s is larger than the range r0 of the underlying two-body

potential. The pair relation can be written in terms of the short distance behavior of the pair

distribution function P12(r) for the spin-up—spin-down pairs [49–51, 57]. Throughout, we

employ the normalization 4π
∫∞

0
P12(r)r2dr = N1N2. The thermally averaged expectation

values are obtained by employing two complementary approaches, a “microscopic approach”

and a “direct approach”.

In the microscopic approach, the thermal expectation value of an observable A is ob-

tained using 〈A〉th =
∑

j exp[−Ej/(kBT )]Aj/
∑

j exp[−Ej/(kBT )], where the sum runs over

all eigen energies Ej (with associated eigen states ψj) of the Hamiltonian H and Aj =

〈ψj|A|ψj〉/〈ψj|ψj〉. The solutions to the time-independent Schrödinger equation are obtained

semi-analytically for the interaction model VF [145, 146] and using a basis set expansion ap-

proach for the interaction model VG [2, 147, 148]. The basis set expansion approach is
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Figure 3.1: (a) The dotted, dashed, dash-dotted and dash-dot-dotted lines show the scaled
pair distribution function r2P12(r) for kBT/(~ω) = 0, 0.6, 1.2 and 2, respectively, for the
(3, 1) system interacting through VG with r0 = 0.06aho. The T = 0 curve is determined
using the basis set expansion approach while the finite T curves are determined using the
PIMC approach. The thick solid lines in the inset of panel (a), which is a blow-up of the
small r region, show the extrapolation to r = 0. (b) The solid and dotted lines show the
relative energy of the ground state with LΠ = 1− and first excited state with LΠ = 0+ of the
(2, 1) system interacting through VG with r0 = 0.06aho as a function of −1/as.

summarized in Appendix 3.2.1. The direct approach is based on calculating 〈A〉 from the

density matrix ρ, 〈A〉 = Tr(Aρ)/Tr(ρ). To sample ρ, we employ the path integral Monte

Carlo (PIMC) approach [19]. Because of the Fermi sign problem [135], the applicability of

this approach is expected to be limited to the high temperature regime. The PIMC approach

is summarized in Appendix 3.2.2.

Figure 3.1(a) shows the scaled pair distribution function r2P12(r) for the (3, 1) system for

four temperatures, kBT/Eho = 0, 0.6, 1.2 and 2. At T = 0 [dotted line in Fig. 3.1(a)], P12

is governed by the lowest eigenstate, which has LΠ = 1+ symmetry [2] (L and Π denote the

orbital angular momentum and parity, respectively). As the temperature increases, excited

states contribute. The second lowest state has 1− symmetry. Compared to the ground

state, its P12 has an increased amplitude in the small but finite r region. The scaled pair

distribution function r2P12 for kBT = 0.6Eho (dashed line) has a comparable amplitude to

that for T = 0; however, clear differences are visible at larger interspecies distances r. For yet

larger T , the small r amplitude decreases drastically [see dash-dotted and dash-dot-dotted

lines in Fig. 3.1(a)] while the maximum of r2P12 moves to larger r. To extract the contact

from r2P12, we fit the small r region (r larger than r0) and extrapolate the fit to r = 0 [see
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Figure 3.2: Contact CN1,N2 as a function of kBT/Eho for the (a) (1, 1), (b) (2, 1), (c)
(3, 1), and (d) (2, 2) systems. The circles, squares and triangles show CN1,N2 for VG with
r0/aho = 0.06, 0.08 and 0.1 obtained using the PIMC approach. The solid lines show CN1,N2

for VG with r0 = 0.06aho obtained using the basis set expansion approach. For comparison,
the dotted lines in panels (a) and (b) show CN1,N2 obtained using VF. (a) The dashed line
shows the first-order Taylor expansion at high temperature. (b) The dashed line shows the
cluster expansion, i.e., the quantity 2C1,1. (c)/(d) The dashed and dash-dotted lines show
the leading order term of the cluster expansion and the full cluster expansion, respectively.
The insets of panels (a) and (b) show blow-ups of the low temperature regions.

thick solid lines in the inset of Fig. 3.1(a)].

Figure 3.2 shows the contact CN1,N2 at unitarity for N = 2 − 4 as a function of the

temperature. The symbols show the PIMC results, obtained by analyzing the scaled pair

distribution functions r2P12(r) for VG with r0 � aho. The solid lines in Fig. 3.2 show the

contact for r0 = 0.06aho obtained by evaluating the adiabatic relation via the microscopic

approach. It can be seen that the contact calculated by evaluating the adiabatic relation

via the microscopic approach and the pair relation via the direct approach agree or connect

smoothly for the three system sizes considered.

To estimate the dependence of the contact on the range r0 of the underlying two-body
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potential, we determine the contact of the (1, 1) and (2, 1) systems with zero-range interac-

tions (see Appendix 3.2.3 and 3.2.4). The dotted lines in Figs. 3.2(a) and 3.2(b) show the

result. In the low temperature regime, the contact for r0 = 0 lies below that for r0 > 0

for the (1, 1) and (2, 1) systems. At kBT = 0.4Eho, e.g., the (1, 1) and (2, 1) contacts for

r0 = 0.06aho lie 1.5% and 3%, respectively, above the contact for r0 = 0. At large T , the

dependence of the contact on the range is negligibly small. Our PIMC simulations suggest

a similar range dependence for the (3, 1), (4, 1) and (2, 2) systems.

Figures 3.2(a)-3.2(d) show an intriguing dependence of the contact on the temperature.

C1,1 and C2,2 decrease monotonically with increasing temperature while C2,1 and C3,1 exhibit

a maximum at kBT ≈ 0.36Eho and between 0.4Eho and 0.5Eho, respectively. To explain this

behavior, it is instructive to evaluate the adiabatic relation via the microscopic approach.

For the (1, 1) system with zero-range interactions, one finds

∂Ej
∂(−a−1

s )
=

Γ(j + 1/2)23/2

π(2j)!
Ehoaho (3.4)

for the s-wave states and ∂Ej/(∂(−a−1
s )) = 0 for all higher partial wave states [145, 149].

The fact that C1,1 decreases monotonically with decreasing temperature is thus a direct con-

sequence of the fact that ∂Ej/(∂(−a−1
s )) (for s-wave states) decreases with increasing j. The

inclusion of effective range corrections does not, if applied to the Gaussian model interaction

with sufficiently small r0, change this picture (see Appendix 3.2.3). A similar analysis, based

on the numerically determined energies, holds for the (2, 2) system. Figure 3.1(b) shows the

lowest two relative eigen energies, which correspond to states with LΠ = 1− and 0+ symme-

try, respectively, of the (2, 1) system as a function of −aho/as for r0 = 0.06aho. The slope of

the 1− state is smaller than that of the 0+ state. This can be understood as follows. In the

as → 0− limit, the lowest state has LΠ = 1− symmetry. In the as → 0+ limit, in contrast,

the lowest state has LΠ = 0+ symmetry. The two states cross at aho/as ≈ 1 [150–152].

Correspondingly, in the unitary regime the energy of the lowest L = 0 state changes more
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rapidly with −1/as than that of the lowest L = 1 state, implying that the contact at uni-

tarity increases in the low temperature regime where the inclusion of only two states yields

converged results. A more comprehensive analysis that accounts for all states is presented in

Appendix 3.2.4. For the (3, 1) system, a similar argument can be made in the low tempera-

ture regime where the inclusion of just a few states suffices. The calculations presented here

suggest that CN1,N2 decreases monotonically with T if N1−N2 = 0 and exhibits a maximum

at finite T if N1−N2 6= 0. While it is tempting to generalize these results to larger systems,

it should be noted that the density of states increases dramatically with increasing N and

that application of a few-state model will be limited to smaller temperatures as N increases.

We now introduce a high temperature cluster expansion of the contact at unitarity. A

formal discussion of the cluster expansion in the canonical ensemble applied to classical sys-

tems is provided in Ref. [153]. The (N1, N2) system contains N1N2 interacting pairs and

one might expect that, using the argument that two-component Fermi gases behave univer-

sally [32, 76], the high temperature tail of CN1,N2 is governed by N1N2C1,1 for kBT � Eho

[see dashed lines in Figs. 3.2(b)-3.2(d)]. The next term in the cluster expansion, applicable

to systems with N > 3, depends on the “three-body term” C2,1 − 2C1,1,

CN1,N2

N1N2

= C1,1 +
N1 +N2 − 2

2
(C2,1 − 2C1,1) + · · · . (3.5)

The dashed and dash-dotted lines in Figs. 3.2(c) and 3.2(d) show the leading term and the

sum of the leading and sub-leading terms for the (3, 1) and (2, 2) systems. The inclusion of

the three-body term improves the validity regime of the cluster expansion notably. Assuming

zero-range interactions, the leading order terms of the Taylor expansions of C1,1 and C2,1 −

2C1,1 around ω̃ � 1, where ω̃ = Eho/(kBT ), are 4π1/2ω̃5/2a−1
ho and −7.012(12)ω̃11/2a−1

ho ,

indicating that the three-body term is suppressed by ω̃3 compared to the leading order

two-body term. Figures 3.2(c) and 3.2(d) show that the numerically obtained C3,1 and

C2,2 contacts (symbols) lie above the cluster prediction (dash-dotted line), suggesting that
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Figure 3.3: Circles, squares, crosses and triangles show CN1,N2 for the (1, 1), (2, 1), (3, 1)
and (4, 1) systems, respectively, interacting through VG with r0 = 0.06aho as a function of
T [6]. Dotted lines serve as a guide to the eye. Inset: Crosses, squares and circles show the
contact of the (3, 1) system for Fermi, Boltzmann and Bose statistics, respectively.

the corresponding leading order four-body expansion coefficients are positive. The above

expansions can be viewed as canonical analogs of the virial equation of state description of

the contact within the grand canonical ensemble [67, 89] (see Appendix 3.2.5 for details).

Equation (3.5) shows that the contact CN−1,1 with N > 2 is N − 1 times larger than

C1,1 in the high temperature limit. In the low temperature limit (see Fig. 3.3), in contrast,

CN−1,1 with N > 2 is only slightly larger than C1,1, reflecting the fact that, to leading order,

the system can form one and not N − 1 bound pairs. It is also interesting to compare the

limiting behaviors of C3,1 and C2,2. C2,2 is 4/3 times larger than C3,1 at large T [see Eq. (3.5)]

but roughly two times larger at low T . The latter reflects the fact that the (2, 2) and (3, 1)

systems can form two dimers and one dimer, respectively.

To elucidate the role of the Fermi statistics, we focus on the (3, 1) system at unitarity

with r0 = 0.06aho. The inset of Fig. 3.3 shows the contact obtained by treating the majority

particles as identical fermions (crosses; these are the same data as discussed above), as

identical bosons (circles) and as distinguishable “Boltzmann particles” (squares). In the

high temperature regime, the Fermi and Bose statistics can be treated as a correction to

the Boltzmann statistics. In the low temperature regime, in contrast, appreciable differences

are revealed. The (3, 1) systems with Bose and Boltzmann statistics share the same ground
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state and thus the same contact in the zero temperature limit. Compared to the contact

of the Bose and Boltzmann systems, that of the Fermi system is strongly suppressed as a

consequence of the Pauli exclusion principle. Specifically, the (3, 1) Fermi system at unitarity

does not support a bound state in free space while the (3, 1) Bose and Boltzmann systems do.

The existence of self-bound states leads to an increased amplitude of the pair distribution

function at small interspecies distances. Moreover, the Bose and Boltzmann systems are—

unlike the Fermi system—not fully universal, i.e., their properties are, in addition to the

s-wave scattering length, governed by a three-body parameter. This implies that the Bose

and Boltzmann systems are characterized by a non-zero three-body contact in addition to

the two-body contact considered throughout this paper [154, 155].

Finite-temperature effects play an important role in many finite-sized systems, includ-

ing atomic clusters, and quantum dots. Our work demonstrates that small harmonically

trapped two-component Fermi gases with infinitely strong interspecies s-wave interactions,

which can be realized and probed experimentally, also exhibit intriguing dependencies on the

temperature. In particular, we proposed a high-temperature cluster expansion in the canon-

ical ensemble, quantified the range dependence of the contact, observed and interpreted the

distinctly different behavior of the contact of spin-balanced and spin-imbalanced Fermi gases

in the low temperature regime, and elucidated the role of the Fermi statistics. The ability

to change the particle statistics is unique to the PIMC technique and has contributed no-

tably to the understanding of microscopic superfluidity and condensation of bosonic helium

droplets [156, 157]. Future studies aim at determining the critical temperature, and the

superfluid fraction and superfluid density of small trapped Fermi gases.
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3.2 Appendix

3.2.1 Basis set expansion approach

The explicitly correlated Gaussian basis set expansion approach with semi-stochastic pa-

rameter optimization has been used extensively in the literature to describe the behavior of

small harmonically trapped two-component Fermi gases with short-range interactions (see,

e.g., Ref. [2] for details). The energies of the three- and four-body systems can be calculated

with an accuracy of better than 1% (and often better than 0.1%). To determine the solid

lines in Figs. 3.2(b)-3.2(d), we used energy cutoffs Erel around 11Eho, 9Eho, and 9.5Eho,

respectively. Including the degeneracies arising from the projection quantum number as well

as the relative energies of states that are only very weakly affected by the short-range in-

teractions, this amounts to around 1250, 230 and 700 energy levels for the (2, 1), (3, 1) and

(2, 2) systems, respectively. The use of a finite energy cutoff implies that the determination

of the finite-range contact within the microscopic approach is limited to the low temperature

regime. Convergence of the contact with respect to the energy cutoff was tested by including

successively fewer energy levels.

3.2.2 Path integral Monte Carlo approach

Our PIMC implementation largely follows that described in Refs. [19, 133]. In the low

temperature regime, we find that we have to adjust the simulation parameters that control

the sampling of the unpermuted configurations as well as those that control the sampling of

the permutations carefully. We employ the second- and fourth-order Trotter formula [112,

158]; higher-order propagation schemes did not seem to lead to further improvements.

98



It is well known that the standard PIMC algorithm, as employed here, suffers from the

Fermi sign problem [135]. Simply put, the signal to noise ratio decreases exponentially

with decreasing temperature and increasing number of particles. As demonstrated by our

simulation results, the Fermi sign problem is sufficiently small for the parameter region

considered in this paper. In particular, the PIMC algorithm allows us to investigate a

region of the physical parameter space (strong short-range interactions and relatively low

temperature) that is inaccessible by other numerical approaches.

3.2.3 (1,1) system with zero-range interactions

The relative energies of the (1, 1) system with s-wave zero-range interactions can be deter-

mined by solving the transcendental equation [145]

√
2Γ(3/4− Erel/(2Eho))

Γ(1/4− Erel/(2Eho))
=
aho

as
. (3.6)

At unitarity, the relative s-wave energies read Erel
j = (2j + 1/2)Eho, where j = 0, 1, · · · .

States with relative orbital angular momentum L greater than zero are not affected by the

interactions. Using these energies and the expressions for the change of the relative energies

with −1/as, Eq. (3.4), one finds

C1,1(ω̃) = 8
√
π
eω̃
(
eω̃ − 1

)2√
e−ω̃ sinh (ω̃)

eω̃ [eω̃ (eω̃ − 2) + 4]− 1
a−1

ho (3.7)

[see dotted line in Fig. 3.2(a)].

To quantify the corrections that arise from the finite range of the interspecies interaction

potential, we consider three approaches:

(i) Using a B-spline approach, we calculate the relative energies of the (1, 1) system as

a function of −1/as up to 500Eho for the first 50 angular momentum channels. Using these

energies and the corresponding slopes, we calculate the contact numerically. The solid line
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Figure 3.4: Range dependence of the contact C1,1 for r0 = 0.06aho as a function of kBT/Eho.
The circles show the difference between the finite-range contact calculated using approach (i)
and the zero-range contact, normalized by the zero-range contact. The solid line shows
the difference between the finite-range contact calculated using approach (ii) and the zero-
range contact, normalized by the zero-range contact. In the large T limit, the difference
approaches zero from below. In approach (ii), reff = 0.12178aho—corresponding to VG with
r0 = 0.06aho—has been used.

in Fig. 2(a) shows the result for the Gaussian potential with r0 = 0.06aho.

(ii) We replace −1/as in Eq. (3.6) by −1/as + reffk
2/2, where reff denotes the effective

range and k is related to the relative energy via ~2k2/m = Erel. The leading order effective

range corrections to the energy and to the change of the energy at unitarity can then be

derived analytically [149]. Using these expressions, the contact can be readily determined

numerically within the microscopic approach. On the scale of Fig. 3.2(a), the resulting

contact would be indistinguishable from the solid line.

(iii) To account for the fact that higher partial wave channels are affected by the inter-

species interactions if the range of the underlying two-body potential is finite, we generalize

the above effective range treatment to finite angular momenta. Specifically, we replace

the generalized scattering lengths in the transcendental equations for the higher partial

waves [159] by the corresponding effective range expansions and determine the corrections

to the energy and to the slope of the energy for vanishing generalized scattering lengths

due to the effective range. Calculating the effective ranges for the Gaussian potential with

r0 = 0.06aho for the lowest few partial wave channels, we find that the effective range correc-

tion of the contact due to the L = 1 channel is about 0.0003% and 0.015% for kBT/Eho = 1/2
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and 2, respectively. For fixed T , the corrections decrease with increasing L. Although the

L = 1 channel leads to a larger percentage correction at large T than at small T , its overall

role is negligible since the contact itself is small in the large T regime.

Overall, the agreement between the contacts calculated using approaches (i)-(iii) is ex-

cellent. To bring out the size of the finite-range corrections, Fig. 3.4 shows the difference

between the finite-range and zero-range contacts, normalized by the zero-range contact. The

circles show the relative difference for the case where the finite-range contact is calculated

using approach (i) while the solid line shows the relative difference for the case where the

finite-range contact is calculated using approach (ii). The difference is largest at low T and

decreases rapidly. The difference changes sign at kBT ≈ 1.25Eho and then approaches zero

from the negative side. For kBT & Eho, the percentage deviation is smaller than 0.5% and

thus, for all practical purposes, negligible.

A key result of the above analysis is that the two-body contact is nearly fully determined

by the s-wave channel and that higher partial wave contributions play a negligible role if the

interspecies interactions are modeled by the Gaussian potential VG with r0 = 0.06aho. This

is crucial for our analysis of the (2, 1) system discussed in Appendix 3.2.4, which assumes

interspecies s-wave zero-range interactions. It also suggests that our high temperature results

for larger systems, obtained by using VG with r0 = 0.06aho, are very close to the universal

zero-range results.

3.2.4 (2,1) system with zero-range interactions

To determine the contact of the (2, 1) system with zero-range interactions at unitarity, we

resort to the hyperspherical coordinate approach [146, 160]. In this approach, the solutions of

the relative Schrödinger equation are obtained in a two step process. First, the hyperangular

Schrödinger equation is solved for fixed hyperradius R. Second, a set of coupled hyperradial

Schrödinger equations is solved. For zero-range interactions with infinitely large s-wave
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scattering length, the coupling between the hyperangular and hyperradial degrees of freedom

vanishes and the relative eigen energies at unitarity can be written as Erel = (2q+sL,ν+1)Eho,

where the hyperradial quantum number q takes the values 0, 1, · · · . The sL,ν are solutions

of the transcendental equation [146, 160]

(−1)L 2F1

(
1
2
(L− sL,ν + 2), 1

2
(L+ sL,ν + 2);L+ 3

2
; 1

4

)
π(2L+ 1)!!

+

1

Γ
(

1
2
(L− sL,ν + 1)

)
Γ
(

1
2
(L+ sL,ν + 1)

)
=

1√
2Γ
(

1
2
(L− sL,ν + 2)

)
Γ
(

1
2
(L+ sL,ν + 2)

) R
as

(3.8)

for 1/as = 0. In Eq. (3.8), the hyperradius R is defined through R2 = 2(r2
12 + r2

23 + r2
13)/3

and 2F1 denotes the hypergeometric function.

To determine the change of the relative energies at unitarity with −1/as, we replace

sL,ν in Eq. (3.8) by sL,ν + ∆sL,ν , where |∆sL,ν | is assumed to be small. Taylor expanding

Eq. (3.8) around the known sL,ν value, we find ∆sL,ν = cL,νR/as. We insert this into the

effective hyperradial potential ~2[(sL,ν + ∆sL,ν)
2 − 1/4]/(2mR2) and treat the leading order

correction as a perturbation, i.e., we define Vpert(R) = ~2cL,νsL,ν/(mRas). For each sL,ν , we

calculate the exact proportionality constant cL,ν and determine the change of the relative

energy by treating Vpert(R) in first-order perturbation theory in the hyperradial Schrödinger

equation, i.e., by evaluating the integral
∫∞

0
|Fq,sL,ν (R)|2Vpert(R)dR. The unperturbed radial

wave functions Fq,sL,ν (R) are obtained by solving the hyperradial Schrödinger equation for

the unitary problem. Using the known expressions for Fq,sL,ν (R) [146], the integral can

be evaluated analytically, yielding the leading-order variation of Erel with −1/as for each

sL,ν and q = 0, 1, · · · . The approach outlined here reproduces the recurrence relations of

Refs. [141, 161]. Using Mathematica, the energies and slopes of the energies of the (2, 1)

system at unitarity can be calculated with essentially arbitrary accuracy, thereby allowing

us to calculate the temperature-dependent contact with high accuracy. In calculating the
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Table 3.1: Contact C2,1 as a function of temperature for s-wave zero-range interactions at
unitarity.

kBT/Eho C2,1/a
−1
ho kBT/Eho C2,1/a

−1
ho

0.1 10.4986 2.6 1.23893
0.2 10.6717 2.7 1.13335
0.3 10.8225 2.8 1.03959
0.4 10.8529 2.9 0.956067
0.5 10.7047 3.0 0.881422
0.6 10.3479 3.1 0.814516
0.7 9.79272 3.2 0.754375
0.8 9.08421 3.3 0.700163
0.9 8.28504 3.4 0.651166
1.0 7.45680 3.5 0.606768
1.1 6.64831 3.6 0.566439
1.2 5.89176 3.7 0.529719
1.3 5.20435 3.8 0.496209
1.4 4.59212 3.9 0.465562
1.5 4.05395 4.0 0.437476
1.6 3.58469 4.1 0.411684
1.7 3.17735 4.2 0.387954
1.8 2.82444 4.3 0.366081
1.9 2.51872 4.4 0.345884
2.0 2.25359 4.5 0.327202
2.1 2.02320 4.6 0.309894
2.2 1.82248 4.7 0.293834
2.3 1.64710 4.8 0.278908
2.4 1.49338 4.9 0.265017
2.5 1.35820 5.0 0.252072

partition function, care has to be exercised as the above formalism excludes a large number

of “trivial energy levels” that are not affected by the s-wave interactions [146]. We account

for these “trivial states” using the ideas discussed in Ref. [148].

Table 3.1 tabulates the contact C2,1 [see also dotted line in Fig. 3.2(b)]. These zero-

range results serve as a benchmark for our PIMC simulations. Moreover, the semi-analytic

expressions for the energy and its variation with −1/as can also be used to calculate the

third-order contact coefficient [67]. We find 0.0269223(3), which notably improves upon the

accuracy of the value of 0.02692(2) of Ref. [67]; a more detailed discussion of the connection
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Figure 3.5: (a) The solid, dotted, dashed and dash-dotted lines show the weight factor
exp[−Erel

j /(kBT )]/Zrel (see right axis) as a function of the relative energy for kBT/Eho =
0.2, 0.4, 0.6 and 0.8, respectively. The circles show the zero-temperature contact C̄2,1 (see
left axis) for states with Erel

j < 5Eho. (b) The dots show the zero-temperature contact C̄2,1

as a function of the relative energy for Erel
j . 30Eho. The solid (dashed) line connects the

contacts of L = 1 (L = 0) states, which are characterized by the same sL,ν value but different
q values; the sL,ν values chosen are the smallest ones for both L = 1 and 0.

between the second- and third-order contact coefficients [67] and our cluster expansion is

given in Appendix 3.2.5.

We now refine the two-state model, which was used in the main text to explain why the

maximum of C2,1 occurs at finite T . Circles in Fig. 3.5 show the zero-temperature contacts

C̄2,1(Erel
j ), C̄2,1(Erel

j ) = (4πm/~2)∂Erel
j /(∂(−a−1

s )), associated with the jth eigenstate of the

(2, 1) system at unitarity as a function of Erel. Panel (a) focuses on the small Erel region while

panel (b) extends up to Erel = 30Eho. Figure 3.5 shows that the zero-temperature contacts

are non-negative. Moreover, all C̄2,1(Erel
j ) but one are smaller than 11a−1

ho . The “outlier”

corresponds to the lowest L = 0 state, i.e., the state with the second lowest eigen energy.

To calculate the temperature-dependent contact C2,1 within the microscopic approach, the

zero-temperature contacts C̄2,1(Erel
j ) need to be weighted by the temperature-dependent

Boltzmann factors exp[−Erel
j /(kBT )]/Zrel(T ), where Zrel(T ) denotes the partition function
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Table 3.2: High-temperature expansion coefficients c
(i)
1,1 and c

(i)
2,1 for the cluster expansion in

the canonical ensemble.
i 0 1 2 3 4

c
(i)
1,1 4

√
π 0

√
π/6 −2

√
π

√
π/96

c
(i)
2,1 −7.012(12) 0.0(1)

that accounts for the relative degrees of freedom. Lines in Fig. 3.5(a) show these “weight

factors” for four different T , kBT/Eho = 0.2, 0.4, 0.6 and 0.8. It can be seen that the

weight factor drops off quickly for kBT/Eho = 0.2, indicating that the “outlier” as well as

the zero-temperature contacts of the other excited states contribute negligibly to C2,1. At

kBT/Eho = 0.4, in contrast, the “outlier” carries appreciable weight compared to the zero-

temperature contact of the lowest eigen state. At yet higher T , the weight factor falls off

slower, thereby reducing the relative importance of the “outlier”.

3.2.5 Cluster expansion in canonical ensemble and connection to

virial equation of state in grandcanonical ensemble

This section elaborates on the cluster expansion introduced in the main part of the text.

To further explore the high temperature behavior, we Taylor expand C1,1 and C2,1 − 2C1,1

around ω̃ � 1. We find

C1,1 = ω̃5/2

∞∑
i=0

c
(i)
1,1ω̃

ia−1
ho (3.9)

and

C2,1 − 2C1,1 = ω̃5/2

∞∑
i=3

c
(i)
2,1ω̃

ia−1
ho . (3.10)

Table 3.2 lists the dimensionless coefficients c
(i)
1,1 and c

(i)
2,1 for i ≤ 4.

We now connect the high temperature cluster expansion in the canonical ensemble to
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the more frequently used high-temperature virial expansion in the grand canonical ensem-

ble [87], which assumes large number of particles. For simplicity, we consider spin-balanced

harmonically trapped systems, i.e., systems with N1 = N2 = N/2. The contact Cgc in the

grand canonical virial expansion reads [67]

Cgc = 27/2π3/2ω̃−1/2Z1(ω̃)
[
c2(ω̃)z2 + c3(ω̃)z3 + · · ·

]
a−1

ho , (3.11)

where Z1(ω̃) denotes the partition function of a single particle in a spherically symmetric

harmonic trap and z the fugacity, z = exp(µ/kBT ); here, µ is the chemical potential. The

contact coefficients c2(ω̃) and c3(ω̃) for the trapped system depend on the temperature and

can be derived from the second- and third-order virial coefficients of the trapped system [67].

In the following, we use the high temperature expansions

c2(ω̃) =
1

2
√

2π

(
1− ω̃2

12
+ · · ·

)
(3.12)

and

c3(ω̃) = 0.0269223(3) + · · · . (3.13)

The high-temperature expansion of the partition function reads

Z1(ω̃) = ω̃−3

(
1− ω̃2

8
+ · · ·

)
. (3.14)

The fugacity z can be determined from the number equation [67]. Expanding the number

equation for small z, we find

z =
N

2

(
ω̃3 +

ω̃5

8
− 3

8

N

2
ω̃6 + · · ·

)
. (3.15)
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Table 3.3: High-temperature expansion coefficients c
(i)
gc;1,1 and c

(i)
gc;2,1 extracted from the

contact determined in the grand canonical ensemble.

i 0 1 2 3

c
(i)
gc;1,1 4

√
π 0

√
π/6 −7.01342(2)

c
(i)
gc;2,1 −7.01342(2)

Inserting the expansions given in Eqs. (3.12)-(3.15) into Eq. (3.11), we find

Cgc =

(
4
√
π
N2

4
ω̃5/2 +

√
π

6

N2

4
ω̃9/2 − 3

√
π
N3

8
ω̃11/2

−1.69606(2)
N3

8
ω̃11/2 + · · ·

)
a−1

ho . (3.16)

To relate Eq. (3.16) to Eqs. (3.9) and (3.10), we write, in analogy with Eq. (4) of the main

text,

Cgc

N2/4
= Cgc;1,1 +

N − 2

2
(Cgc;2,1 − 2Cgc;1,1) + · · · , (3.17)

where

Cgc;1,1 = ω̃5/2

∞∑
i=0

c
(i)
gc;1,1ω̃

ia−1
ho (3.18)

and

Cgc;2,1 − 2Cgc;1,1 = ω̃5/2

∞∑
i=3

c
(i)
gc;2,1ω̃

ia−1
ho . (3.19)

The coefficients c
(i)
gc;1,1 and c

(i)
gc;2,1 are listed in Table 3.3. Comparison of Tables 3.2 and 3.3

shows that the coefficients with i = 0 − 2 agree but that discrepancies exist for i = 3.

Specifically, our analysis shows that the leading order three-body coefficients agree, i.e.,

c
(3)
gc;2,1 = c

(3)
2,1, but that the two-body term at the same order in ω̃ does not agree, i.e.,
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c
(3)
gc;1,1 6= c

(3)
1,1. Disagreement is expected since the canonical and grand canonical ensembles

are known to yield different results. The fact that the disagreement appears in the term

proportional to N2 and not the term proportional to N3 makes sense, since our analysis in

the grand canonical ensemble assumes large N , rendering the term proportional to N2 less

important than the term proportional to N3.

3.2.6 Note on the temperature scales

Throughout, we reported the temperature in terms of the natural energy scale of the har-

monic oscillator. Other relevant temperature scales are the Fermi temperature TF and

the critical temperature Tc. The Fermi temperature of small harmonically trapped two-

component Fermi gases is defined through the energy of the highest single-particle state

of the non-interacting system, yielding TF = 2.5Eho/kB for N = 3 − 5. The critical tem-

perature for the trapped spin-balanced system is Tc ≈ 0.2TF [162]. Our calculations cover

temperatures much smaller and much larger than these characteristic temperature scales.
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Chapter 4

Abnormal superfluid fraction of

harmonically trapped few-fermion

systems

by Yangqian Yan1 and D. Blume1

1Department of Physics and Astronomy, Washington State University, Pullman,

Washington 99164-2814, USA

Copyright (2014) by the American Physical Society

Superfluidity is a fascinating phenomenon that, at the macroscopic scale, leads to dis-

sipationless flow and the emergence of vortices. While these macroscopic manifestations

of superfluidity are well described by theories that have their origin in Landau’s two-fluid

model, our microscopic understanding of superfluidity is far from complete. Using analytical

and numerical ab initio approaches, this paper determines the superfluid fraction and local

superfluid density of small harmonically trapped two-component Fermi gases as a function

of the interaction strength and temperature. At low temperature, we find that the superfluid

fraction is, in certain regions of the parameter space, negative. This counterintuitive finding
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is traced back to the symmetry of the system’s ground state wave function, which gives rise

to a diverging quantum moment of inertia Iq. Analogous abnormal behavior of Iq has been

observed in even-odd nuclei at low temperature. Our predictions can be tested in modern

cold atom experiments.

4.1 Abnormal superfluid fraction of harmonically

trapped few-fermion systems

Superfluidity plays a crucial role in various areas of physics. The core of neutron stars

is thought to be superfluid, giving rise to modifications of the specific heat and rapid cool-

ing [163, 164]. In laboratory settings, superfluidity of bosonic liquid helium-4 below 2.17K

and fermionic liquid helium-3 below 3mK leads to dissipationless flow and the formation

of vortices [12]. More recently, superfluidity has been demonstrated in dilute atomic Bose

and Fermi gas experiments [165–168]. The superfluid fraction shows a strong dependence

on the dimensionality and the size of the system. In particular, transitions that are sharp in

homogeneous systems are smeared out in finite-sized systems [169–171].

Over the past 20 years or so, non-classical rotations in small doped bosonic helium-4 and

molecular para-hydrogen clusters have been interpreted within the framework of microscopic

superfluidity [172–177]. Elements of this framework date back to the 50s when nuclear

physicists introduced a moment of inertia based method for the study of superfluidity in

finite-sized nuclei [178–180]. In nuclei, superfluidity is tied to the pairing of nucleons [169,

181, 182]. As a consequence of pairing, the quantum moment of inertia of even-even nuclei,

i.e., nuclei with an even number of protons and an even number of neutrons, tends to go to

zero in the zero temperature limit while that of even-odd nuclei tends to increase sharply as

the temperature approaches zero [169, 182, 183].

We investigate the superfluid fraction and local superfluid density of small harmonically
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trapped dilute atomic Fermi gases over a wide range of interaction strengths. In the low

temperature region, we identify parameter combinations where the quantum moment of in-

ertia is abnormally large, i.e., larger than the classical moment of inertia, implying a negative

superfluid fraction. The negative superfluid fraction is linked to the topology of the density

matrix. Specifically, the superfluid fraction takes on negative values in the low temperature

regime when one of the energetically low-lying eigenstates supports a Pauli vortex with finite

circulation [184–186] at the center of the trap. Intuitively, this can be understood as follows:

In the absence of a low-energy eigenstate with finite circulation, the superfluid few-fermion

gas “does not respond” to an infinitesimal rotation. This situation closely resembles that for

a superfluid few-boson gas. In the presence of a low-energy eigenstate with finite circulation,

however, the superfluid few-fermion gas “responds strongly” to an infinitesimal rotation, i.e.,

the infinitesimal rotation leads to a dynamical instability. We find that the radial superfluid

density is negative near the trap center and positive near the edge of the cloud, indicating

that the dynamical instability develops at the vortex core. A related instability also exists

for bosonic few-atom systems. However, since the instability for bosons does not occur for an

infinitesimal rotation but when the rotating frequency is comparable to the angular trapping

frequency [187], the superfluid fraction, which is defined in the limit of infinitesimal rota-

tion [188–191], is not affected by the instability. We note that a negative superfluid fraction

has also been predicted to exist for the Fulde-Ferrell-Larkin-Ovchinnikov state of fermions

loaded into an optical lattice [192].

We consider N atoms of mass m described by the Hamiltonian H in a spherically sym-

metric harmonic trap. The system Hamiltonian under a small rotation about the z-axis can,

in the rotating frame, be expressed as Hrot = H − ΩLz [12], where Ω denotes the angular

rotating frequency and Lz the z-component of the angular momentum operator L. The

superfluid fraction ns is defined as ns = 1− Iq/Ic [188–191], where the quantum moment of
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inertia Iq is defined in terms of the response to an infinitesimal rotation,

Iq =
∂〈Lz〉th
∂Ω

∣∣∣∣
Ω=0

, (4.1)

and 〈·〉th indicates the thermal average. The classical moment of inertia Ic is defined through

Ic = 〈m
∑

n r
2
n,⊥〉th, where rn,⊥ is the distance of the nth particle to the rotating axis [193].

We work in the canonical ensemble and determine the superfluid fraction of small trapped

systems as a function of the temperature T using two different approaches. (i) We use the

path integral Monte Carlo (PIMC) approach to sample the density matrix at temperature

T [19, 133, 194]. The superfluid fraction ns and local superfluid density ρs are then obtained

using the area estimator [94, 191, 195]. (ii) We employ a microscopic approach [194]: For

the systems considered, L2 and Lz commute with the Hamiltonian H, implying that the

total orbital angular momentum quantum number L and corresponding projection quantum

number M are good quantum numbers. One finds Iq = ~2〈M2〉th/(kBT ), where the thermal

average runs over the system at rest [196]. To evaluate Iq, we calculate a large portion of

the quantum mechanical energy spectrum and thermally average the quantity M2. From

the same set of calculations, we determine r2
n,⊥ (and correspondingly Ic) via the generalized

virial theorem [49–51], which applies to systems with short-range interactions with s-wave

scattering length as under spherically symmetric harmonic confinement with angular trap-

ping frequency ω, 3ω2
∑

n〈mr2
n,⊥〉th = 2〈E + as(∂E/∂as)/2〉th. Here, E denotes the total

energy.

We first consider N identical non-interacting harmonically trapped bosons or fermions

described by the Hamiltonian H = Hni,

Hni =
N∑
j=1

(
−~2

2m
∇2
j +

1

2
mω2r2

j

)
, (4.2)

where rj denotes the position vector of the jth atom. Using the N -body partition function,
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Figure 4.1: Superfluid properties of the non-interacting trapped single-component gas as
a function of kBT/Eho. (a) From top to bottom at kBT = Eho, the alternating solid and
dashed lines show ns for the Fermi gas with N = 1−10. (b) From bottom to top, alternating
solid and dashed lines show ns for the Bose gas with N = 1− 10. (c) The dashed and solid
lines replot ns for N = 2 and 3, respectively. For comparison, symbols show ns obtained
using the PIMC approach. The errorbars are smaller than the symbol size. (d) The dashed
and solid lines show the scaled radial total and superfluid density for N = 2.

we calculate the thermal averages for Ic and Iq [197]. Figure 4.1(b) shows ns for N = 1− 10

non-interacting bosons. For all N , ns goes to 1 as the temperature approaches zero. This is

a direct consequence of the fact that the ground state has L = 0. As the particle number

increases, the superfluid region broadens. Figure 4.1(a) shows ns for N = 1 − 10 non-

interacting fermions. The curves have similar asymptotic behavior at high temperature, yet

differ dramatically at low temperature. The N = 1, 4 and 10 curves increase monotonically

with decreasing temperature and approach one at T = 0. Due to the closed shell nature,

the ground state of these Fermi systems is, as that of the Bose systems, non-degenerate and

has vanishing angular momentum. The curves for the other N values dive down to negative

infinity at zero temperature. The ground state of these open-shell systems is degenerate

and contains finite angular momentum states. Figure 4.1(c) compares the analytical results
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(lines) for N = 2 and 3 with those obtained by the PIMC approach (symbols). The excel-

lent agreement confirms the correctness of our analytical results and demonstrates that our

PIMC simulations yield highly accurate results. Given that BCS theory predicts a vanishing

superfluid fraction for the homogeneous Fermi gas in the absence of an effective attraction,

one might wonder where the non-vanishing ns values for the non-interacting trapped Fermi

gas come from. Our analysis shows that the non-vanishing ns is due to the trap energy

scale Eho, where Eho = ~ω. An analogous energy scale does not exist in the non-interacting

homogeneous system, for which the moment of inertia based method predicts, in agreement

with BCS theory, that ns vanishes. Lastly, we note that although Stringari [198] determined

ns for trapped non-interacting single-component Fermi gases, no negative superfluid fraction

was observed because the semi-classical treatment employed assumed kBT � Eho.

To get a sense of the spatial distribution of the superfluid fraction, we calculate the radial

superfluid density ρs(r) [195, 199]. As an example, the solid line in Fig. 4.1(d) shows the

scaled radial superfluid density ρs(r)r
2 for the two-fermion system at T = 0.265Eho/kB. For

this temperature, we have ns = 0. The radial superfluid density is negative for small r and

positive for large r. For comparison, the dashed line shows the scaled radial total density.

For the non-interacting trapped Fermi systems investigated, we find that the negative part

of the radial superfluid density develops in the small r region and then, with decreasing

temperature, grows outward.

To interpret this behavior, we consider the N = 2 case at T = 0. In the absence of

rotation, the ground state has L = 1 and the expectation value of Lz averages to zero.

The three-fold degenerate state splits under a small rotation, with the M = 1 state having

the lowest energy; correspondingly, the expectation value of Lz is ~. Using these results

to express Iq, see Eq. (4.1), as a finite difference, we find that Iq scales as limΩ→0 ~Ω−1 at

T = 0. This shows that the divergence of Iq (and hence the negative value of ns) is due

to the M = 1 state, which contains a vortex at the center of the trap with circulation 1.
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Figure 4.1(d) shows that this is where the radial superfluid density is negative, i.e., this is

the region where the dynamical instability develops.

Next, we consider two-component Fermi gases consisting of N1 spin-up and N −N1 spin-

down particles with short-range interspecies interactions. As the s-wave scattering length is

tuned from small negative values to infinity to small positive values, the system changes from

forming Cooper pairs to composite bosonic molecules [32]. In what follows we investigate how

the change from “fermionic” (Cooper pairs) to “bosonic” (composite molecules) is reflected

in the superfluid properties of the trapped system. We consider the Hamiltonian H = Hint,

Hint = Hni +

N1∑
j=1

N∑
k=N1+1

Vtb(rjk), (4.3)

for two different interspecies two-body potentials Vtb, a regularized zero-range pseudopo-

tential VF [3] and a short-range Gaussian potential VG with depth U0 (U0 < 0) and range

r0, VG(rjk) = U0 exp[−r2
jk/(2r

2
0)]. The depth and range are adjusted so that VG yields the

desired as; throughout, we consider potentials with r0 � aho [aho =
√
~/(mω)] that support

at most one free-space s-wave bound state.

For the trapped (2, 1) system with zero-range interactions, we determine a large portion

of the energy spectrum by solving the Lippman Schwinger equation for arbitrary scattering

length [150]. This means that ns can be determined within the microscopic approach over a

wide temperature regime. Figure 4.2(b) shows the classical moment of inertia Ic of the (2, 1)

system as a function of the temperature for different 1/as (as positive). Ic decreases for fixed

T with increasing 1/as and increases for fixed as with increasing T . Figure 4.2(c) shows

the quantum moment of inertia Iq. In the high temperature regime, Iq and Ic are nearly

identical. However, in the low temperature regime, notable differences exist. For 1/as = 0,

Iq diverges to positive infinity as T → 0. For aho/as ≈ 1, in contrast, Iq is zero at T = 0,

increases sharply for kBT . 0.1Eho, and then decreases for kBT ≈ 0.1 − 0.5Eho. As aho/as

increases, the local maximum moves to larger temperatures and eventually disappears for
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Figure 4.2: Properties of the interacting trapped (2, 1) system as a function of kBT/Eho.
(a) The lines from bottom to top show ns for aho/as = 0, 0.2, . . . , 2. (b)/(c) The lines from
top to bottom show Ic and Iq, respectively, for aho/as = 0, 0.2, . . . , 2.

aho/as ≈ 2. The dramatic change of Iq at low T on the positive as side can be traced back

to the symmetry change of the ground state wave function. The lowest eigenstate of the

(2, 1) system has L = 1 for aho/as . 1 and L = 0 for aho/as & 1. Correspondingly, Iq goes,

in the zero T limit, to +∞ for aho/as . 1 and to 0 for aho/as & 1. The strong variation of

Iq near aho/as ≈ 1 in the low T regime reflects the “competing” contributions of the L = 0

and L = 1 states to the thermal average.

Combining Ic and Iq yields ns [see Fig. 4.2(a)]. The (2, 1) systems with aho/as . 1 and

aho/as & 1 have a superfluid fraction that goes to negative infinity and one, respectively, at

zero temperature. This can be viewed as a “quantum phase transition like” feature [150, 200].

At kBT = 0.2Eho—a temperature that might be achievable with current experimental set-

ups [90, 92]—ns varies between −0.14(1) and 0.54(1) for aho/as = 0 to 2. For a given as, ns

varies notably over a small temperature regime. The fact that ns is essentially independent

of as for kBT & 0.75Eho and strongly dependent on as for kBT . 0.4Eho might prove

advantageous for qualitatively verifying the predicted behavior experimentally.

We now investigate a trapped spin-balanced system. Figure 4.3(a) shows ns for the (2, 2)

system with as/aho = 0,−0.2,−1, and ∞. The ground state of the non-interacting (2, 2)
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Figure 4.3: Properties of the trapped (2, 2) system. (a) The dotted, solid, dashed, and dash-
dotted lines show ns as a function of kBT/Eho for as/aho = 0,−0.2,−1, and∞, respectively.
The squares, circles, and diamonds show ns obtained by the PIMC approach for as/aho =
−0.2,−1, and ∞, respectively. (b) and (c) show blowups of the high-temperature region.
(d) The thin dotted and dashed lines show Ic for as = 0 and −aho, respectively; the thick
dotted and dashed lines show Iq for as = 0 and −aho, respectively. The dashed curves are
obtained by the microscopic approach (using r0 = 0.06aho) for kBT/Eho ≤ 0.5 and by the
PIMC approach (using r0 = 0.1aho) for kBT/Eho ≥ 0.6. (e) The solid, dotted, dashed,
dash-dash-dotted, dash-dotted, and dash-dot-dotted lines show ρsr

2 for as = −0.2aho and
kBT/Eho = 0.5, 0.6, 0.8, 1, 1.4, and 2, respectively.
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system is nine-fold degenerate (one state has L = 0, three states have L = 1, and five

states have L = 2). The degeneracy of the ground state makes Iq [see thick dotted line in

Fig. 4.3(d)] diverge to plus infinity at T = 0. The superfluid fraction, in turn, goes to minus

infinity as T → 0. As the interactions are turned on, the degeneracy of the states with

different L is lifted, with the energy of the L = 0 state lying below that of the L = 1 and 2

states. This implies that Iq goes to zero at T = 0 for as 6= 0 [for as/aho = −1, see the thick

dashed line in Fig. 4.3(d)]. The behavior of the (2, 2) system is similar to that of the (2, 1)

system in that the zero temperature limit of ns changes from minus infinity to one as the

scattering length is tuned. The transition, however, occurs at different scattering lengths

[as = 0 for the (2, 2) system and aho/as ≈ 1 for the (2, 1) system].

Figure 4.3(e) shows the radial superfluid density for the (2, 2) system with as = −0.2aho

for various temperatures. For the lowest temperature considered (kBT = 0.5Eho), ns is equal

to 0.230(3). Although ns is positive, the radial superfluid density is negative in the small r

region, reflecting the admixture of finite L states to the density matrix. As the temperature

increases, the amplitude of the negative part of the radial superfluid density decreases and

moves to smaller r. When the radial superfluid density is positive everywhere, it roughly

has the same shape as the total radial density (not shown) but with significantly decreased

amplitude. This shows that the superfluid density is, in this regime, distributed roughly

uniformly throughout the cloud and not localized primarily near the center or edge of the

cloud. We find similar behavior for other as.

In practice, thermal equilibrium can not be reached if the confinement is spherically

symmetric. We have checked that our results hold qualitatively for anisotropic traps provided

that |ωx − ωy| � ωx + ωy. Moreover, the abnormal behavior of ns and Iq is also found for

finite rotating frequencies, provided that ~Ω � Eho. Instead of probing the response to a

rotation of the trap, it might be possible to simulate the rotation (and the resulting effective

magnetic field) by applying an effective gauge field [201].
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To summarize, we determined the superfluid properties of small harmonically trapped

Fermi gases as functions of the s-wave scattering length and temperature. At low tempera-

ture, the quantum moment of inertia behaves, in certain regimes, abnormal, i.e., it is larger

than the classical moment of inertia, yielding a negative superfluid fraction. The abnor-

mal behavior arises if one or more of the low-lying eigenstates have a finite circulation, i.e.,

support a vortex. The relevant temperature is roughly . 0.5Eho/kB. Our predictions are

unique to small systems, since such low temperatures can only be reached in few-fermion

systems [90, 92] and not in large Fermi gases.
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While the zero-temperature properties of harmonically trapped cold few-atom systems

have been discussed fairly extensively over the past decade, much less is known about the

finite-temperature properties. Working in the canonical ensemble, we characterize small

harmonically trapped atomic systems as a function of the temperature using analytical and

numerical techniques. We present results for the energetics, structural properties, condensate

fraction, superfluid fraction, and superfluid density. Our calculations for the two-body sys-
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tem underline that the condensate and superfluid fractions are distinctly different quantities.

Our work demonstrates that the path integral Monte Carlo method yields reliable results for

bosonic and fermionic systems over a wide temperature range, including the regime where the

de Broglie wave length is large, i.e., where the statistics plays an important role. The regime

where the Fermi sign problem leads to reasonably large signal to noise ratios is mapped

out for selected parameter combinations. Our calculations for bosons focus on the unitary

regime, where the physics is expected to be governed by the three-body parameter. If the

three-body parameter is large compared to the inverse of the harmonic oscillator length, we

find that the bosons form a droplet at low temperature and behave approximately like a

non-interacting Bose and eventually Boltzmann gas at high temperature. The change of the

behavior occurs over a fairly narrow temperature range. A simple model that reproduces the

key aspects of the phase transition like feature, which can potentially be observed in cold

atom Bose gas experiments, is presented.

5.1 Introduction

Ultracold atomic gases provide a flexible platform for studying a myriad of phenomena

that are driven by quantum mechanics [32, 76, 170, 171, 202, 203]. Generally speaking,

quantum statistical effects dominate when the de Broglie wave length is comparable to or

larger than the average interparticle spacing. When the de Broglie wave length is small, the

particle statistics plays a negligible role and the system dynamics is governed by Boltzmann

statistics. Since the de Broglie wave length scales as 1/
√
T [170, 171], where T is the

temperature, changing the temperature allows one to turn the particle statistics “on” and

“off”. Atomic gases, which can be cooled to below the quantum degeneracy temperature,

thus provide an ideal platform for investigating the importance of particle statistics.

For macroscopic samples, a prominent example for a thermal phase transition is the

transition from the normal to the superfluid phase as observed in bosonic liquid 4He and
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fermionic liquid 3He [12]. Bose-Einstein condensation, the macroscopic occupation of a single

particle state, is another important example. While Bose-Einstein condensation occurs for

ultracold bosonic atomic gases [202], it does not occur, at least not directly, for ultracold

fermionic atomic gases [30, 32]. Condensation for fermions occurs only when two fermions

form composite bosons (diatomic molecules or Cooper pairs) [30, 32, 204, 205]. If the number

of particles is finite (as opposed to infinite), phase transitions get smeared out and the

usual concept, which considers statistical properties in the thermodynamic limit, has to be

revised [206, 207].

The main objective of this paper is to study the temperature dependence of small har-

monically trapped atomic Bose and Fermi systems. To describe these systems, we adopt the

canonical ensemble, i.e., we assume that the system under study is in thermal contact with a

heat bath or thermostat, which has a large number of particles and a well defined temperature

T [208]. We monitor various system properties as a function of the temperature, the number

of particles, the particle statistics, and the interaction strength. Particular emphasis is placed

on the strongly-interacting unitary regime, where the s-wave scattering length diverges. At

zero temperature, it is well established that the particle statistics has a paramount effect on

the system properties. Two-component Fermi gases with infinitely large interspecies scatter-

ing length are fully described by the s-wave scattering length alone [32, 71, 203, 209, 210],

while the properties of Bose gases additionally depend on a three-body parameter [41, 211].

These fundamental differences, which are due to the particle statistics, continue to play an

important role at low temperature but die out at sufficiently high temperature. An interest-

ing question, which we attempt to answer in this paper, is thus what happens at intermediate

temperatures. As expected, we find that the low and intermediate temperature behavior of

Bose and Fermi gases is vastly different. For certain parameter combinations, we find a

thermal phase transition like feature for Bose systems that is governed by the three-body

Efimov parameter. Specifically, we find a transition from a droplet like state to a gas-like
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state. No such transition exists for two-component Fermi gases.

The remainder of this paper is organized as follows. Section 5.2 introduces the system

Hamiltonian and reviews the connections between the free-space Efimov spectrum and the

zero temperature spectrum of the harmonically trapped three-boson system. Moreover, the

path integral Monte Carlo (PIMC) approach is introduced and some numerical details are

discussed. Section 5.3 presents finite temperature characteristics of the trapped two-atom

system. Emphasis is placed on the condensate and superfluid fractions. The radial superfluid

density is calculated and analyzed. Section 5.4 discusses our finite temperature results for

systems with three and more particles. Section 5.4.1 focuses on systems consisting of N

identical bosons while Sec. 5.4.2 considers a trapped gas with Bose, Fermi or Boltzmann

statistics with an impurity. Lastly, Sec. 5.5 concludes.

5.2 Theoretical background

5.2.1 System Hamiltonian and observables

This section introduces the system Hamiltonian and reviews two frameworks for determining

thermally averaged observables. We fix the number of particles and work in the canonical

ensemble. We consider N particles with position vectors rj and mass ma in a spherically

symmetric harmonic trap with angular trapping frequency ω. The model Hamiltonian Ĥ

reads

Ĥ = Ĥ0 + V̂ , (5.1)

where Ĥ0,

Ĥ0 =
N∑
j=1

(
−~2

2ma

∇2
j +

1

2
maω

2r2
j

)
, (5.2)
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denotes the non-interacting Hamiltonian. The interaction potential V̂ reads

V̂ =
N∑
j=1

N∑
k>j

V
(jk)

tb (rjk), (5.3)

where rjk (rjk = |rj − rk| = |rjk|) denotes the relative distance between the jth and kth

particles and V
(jk)

tb the interaction potential for the jth and kth particles. We employ two

different interaction models. Our calculations presented in Sec. 5.3 employ the regularized

zero-range Fermi-Huang pseudopotential V
(jk)

F [3] with s-wave scattering length a
(jk)
s . Our

PIMC calculations presented in Sec. 5.4 employ a finite-range Gaussian potential V
(jk)

G ,

where V
(jk)

G (rjk) = U
(jk)
0 exp[−r2

jk/(2r
2
0)] with depth U

(jk)
0 (U

(jk)
0 < 0) and range r0. The

depth and range are adjusted so that V
(jk)

G yields the desired s-wave scattering length a
(jk)
s .

Throughout, we consider potentials that support at most one free-space s-wave bound state

and whose range r0 is much smaller than the characteristic harmonic trap length aho, where

aho =
√
~/(maω).

To calculate thermally averaged quantities, we introduce the density operator ρ̂ [19, 207],

ρ̂ = e−βĤ , (5.4)

where β is the inverse temperature, β = 1/(kBT ). The expectation value for an operator Ô

is Tr(ρ̂Ô)/Z, where “Tr” stands for the trace of the matrix that is created by projecting the

operator onto a complete basis set, and Z = Tr(ρ̂) is the partition function.

A convenient basis set consists of the energy eigen states ψj of the Hamiltonian Ĥ. In

this case, the density operator is diagonal and can be written as [207]

ρ̂ =
∑
j

e−βEj |ψj〉 〈ψj| , (5.5)
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where Ej denotes the eigen energy of state ψj, and the partition function reads

Z =
∑
j

e−βEj . (5.6)

The sums in Eqs. (5.5) and (5.6) are limited to the energy eigen states ψj that have the

proper particle statistics. For N = 2, e.g., the eigen states can be grouped into states that

are symmetric and those that are anti-symmetric under the exchange of the two particles.

If we treat two identical bosons (fermions), only the symmetric (anti-symmetric) states are

included in the sums in Eqs. (5.5) and (5.6). Importantly, if the complete set is known, the

thermal average 〈Ô〉 of the operator Ô can be calculated,

〈Ô〉 = Z−1
∑
j

e−βEj〈ψj|Ô|ψj〉. (5.7)

While the determination of a large number of energy eigen states ψj is feasible for small

systems, say N . 4, it becomes unfeasible for larger systems.

An alternative formulation, which forms the starting point of the PIMC approach [19]

(see Sec. 5.2.3 for details), projects the density operator onto the position basis,

ρnon-symm(R,R′, β) = 〈R | ρ̂ |R′〉 . (5.8)

Here, R and R′ collectively denote the position vectors r1, · · · , rN and r′1, · · · , r′N , respec-

tively. The thermal average of the operator Ô then reads

〈Ô〉non-symm = (Znon-symm)−1 ×∫
dRdR′ρnon-symm(R,R′, β)〈R′|Ô|R〉, (5.9)
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where the partition function Znon-symm,

Znon-symm =

∫
dRρnon-symm(R,R, β), (5.10)

is again the trace over the diagonal elements. To properly symmetrize or anti-symmetrize

the density operator, we introduce the symmetrizer P̂ [19]. For the single-component Bose

and Fermi gases, P̂ can be written as [121]

P̂ =
1

N !

∑
σ

(±1)NI(σ)P̂σ, (5.11)

where σ denotes the permutation of particle indices, NI(σ) the number of inversions in

σ [122], and P̂σ the corresponding permutation operator. For two identical fermions, e.g.,

P̂ reads (1 − P̂12)/2, where P̂12 exchanges the particle labels 1 and 2. For mixtures, the

symmetrizer P̂ has to be generalized appropriately. The partition function and thermally

averaged observables then read [19]

Z =

∫
dRρ(P̂R,R, β) (5.12)

and

〈Ô〉 = Z−1

∫
dRdR′ρ(P̂R,R′, β)〈R′|Ô|R〉. (5.13)

In addition to the thermally averaged energy E, this work considers a number of thermally

averaged structural properties. The scaled radial density 4πr2
jρrad(rj) with normalization

4π
∫
drjρrad(rj)r

2
j = N [212] tells one the likelihood of finding the jth particle at distance rj

from the trap center. The scaled pair distribution function 4πr2
jkPpair(rjk) with normalization

4π
∫
drjkPpair(rjk)r

2
jk = 1 tells one the likelihood of finding particles j and k at distance

rjk. The hyperradial distribution function Phyper(R) with normalization
∫
dRPhyper(R) = 1
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tells one the likelihood of finding particles j, k and l in a configuration of size R; here,

R2 = (r2
jk + r2

kl + r2
jl)/3. For N = 3, R is the hyperradius (see Sec. 5.2.2 for details).

We also consider the condensate fraction, superfluid fraction, and superfluid density.

For homogeneous systems, the condensate fraction nc is typically defined through the large

distance behavior of the one-body density matrix for bosons and the two-body density matrix

for two-component fermions [30, 32]. It indicates the off-diagonal long-range order of the

system. For inhomogeneous systems, the condensate fraction is defined as the largest eigen

value of the one- and two-body density matrices for bosons and fermions, respectively [29–31].

Intuitively, it is clear that the long-range behavior is “cut off” by the confinement or the finite

extend of the system, implying that the asymptotic behavior of the density matrix contains

no information about non-trivial correlations. Section 5.3 reports the dependence of the

condensate fraction nc on the temperature for two identical bosons and two distinguishable

particles. These studies extend the zero temperature calculations of nc presented in Ref. [149]

to finite temperature. The finite temperature behavior of nc has previously been reported

for two harmonically trapped particles in one dimension [213] but not, to the best of our

knowledge, for two harmonically trapped particles in three dimensions.

The superfluid fraction ns can be defined in various ways (see, e.g., Refs. [30, 214–216]

for a discussion). In this work, we utilize the moment of inertia based definition, which has

its origin in the two-fluid model [188–191],

ns = 1− Iq

Ic

. (5.14)

The quantum moment of inertia Iq is defined in terms of the response to an infinitesimal

rotation about the z-axis,

Iq = β(〈L̂2
tot,z〉 − 〈L̂tot,z〉2), (5.15)
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where L̂tot,z denotes the z-component of the total angular momentum operator L̂tot. The

classical moment of inertia Ic is defined through

Ic = 〈ma

∑
j

r2
j,⊥〉, (5.16)

where rj,⊥ denotes the distance of the jth particle to the z-axis, rj,⊥ = |rj × ẑ|. The

superfluid density is defined such that ma

∫
drρs(r)r2

⊥ = Ic − Iq, where r⊥ denotes the

distance to the z-axis [195]. The moment of inertia based definitions of the superfluid fraction

and superfluid density have previously been applied to a variety of finite-sized quantum

liquids [173–177, 217, 218]. Knowing the complete set of energy eigen states and eigen

energies and using Eq. (5.7), the thermally averaged expectation values 〈L̂tot,z〉 and 〈L̂2
tot,z〉

can be calculated, thereby yielding Iq. Within the PIMC approach, the superfluid fraction

and superfluid radial density are evaluated using the area estimator [94, 191, 195, 219] (see

Sec. 5.2.3 for details on the PIMC approach).

5.2.2 Efimovian states of three identical bosons in a trap

This section reviews the zero-temperature properties of three identical harmonically-trapped

bosons. As discussed in the literature [76], harmonically trapped unitary Bose and Fermi

gases with short-range interactions exhibit universal properties, provided the range of the

interaction is smaller than all other length scales in the problem. The properties of the

two-component Fermi gas near a broad s-wave resonance (and away from p- and higher-

partial wave resonances) are governed by the interspecies s-wave scattering length as and

the harmonic oscillator length aho. In the unitarity limit, i.e., for |as| = ∞, the s-wave

scattering length does not define a meaningful length scale and the only remaining length

scale is aho [32, 76, 146, 203, 220]. The corresponding energy scale is Eho = ~ω. For three

or more identical bosons, an additional parameter, namely, the three-body parameter κ∗, is
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necessary to describe the ground state properties of the Bose gas [41, 146, 211, 220].

The role of κ∗ can be made transparent using the hyperspherical coordinate approach [41,

76]. To this end, we separate off the center of mass motion and divide the remaining six co-

ordinates into the hyperradius R and five hyperangles collectively denoted by Ω. In the limit

of pairwise additive zero-range interactions with 1/as = 0, the hyperradial and hyperangular

degrees of freedom are separable [41, 146, 211]. The lowest eigen value of the hyperangular

Schrödinger equation for the channel with vanishing relative angular momentum angular l is

typically denoted by s0, where s0 ≈ 1.006ı [41, 211]. The hyperradial Hamiltonian ĤR can

then be written as

ĤR =
−~2

2ma

∂2

∂R2
+

1

2
maω

2R2 +
~2(s2

0 − 1/4)

2maR2
. (5.17)

The last term can be interpreted as an effective attractive potential, which diverges in

the R = 0 limit. Without a three-body parameter, the system exhibits the Thomas col-

lapse [43]. The scaled radial solution in the small R limit is proportional to
√
R sin(θb +

Im(s0) lnR) [221], where θb,

θb = arg

(
Γ(1

2
− Erel

2Eho
+ s0

2
)

Γ(1 + s0)

)
, (5.18)

is the three-body phase that determines the short-range behavior of the hyperradial wave

function and Erel denotes the relative three-body energy. The three-body phase can be

related to the three-body parameter κ∗.

Solving Eq. (5.18), the solid lines in Fig. 5.1 show the relative three-body zero-range eigen

energies as a function of the three-body phase θb for infinitely large s-wave scattering length.

For a fixed θb, the energies of the negative part of the energy spectrum are spaced roughly by

the factor 515 [221, 222]. These geometrically spaced energy levels are the signature of the

three-body Efimov effect. In free space, the spacing is exactly exp(2π/|s0|) ≈ (22.7)2 ≈ 515

and the three-body parameter κ∗ is defined as the binding momentum of one of the Efimov
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Figure 5.1: Relative energy spectrum as a function of the three-body phase θb for three
identical bosons in a harmonic trap interacting through zero-range potentials with infinite
s-wave scattering lengths. The circle, square, and triangle show the ground state energy for
the Gaussian two-body interaction with range r0/aho = 0.06, 0.08, and 0.1, respectively. The
inset shows the negative energy regime on a log scale. The spacing between the energy levels
for fixed θb is very close to 515, i.e., very close to the free-space scaling factor.

trimers, Erel = ~2κ2
∗/m [41]. Knowing κ∗, the ratio between consecutive energy levels of the

free-space system is fixed. For the trapped system, corrections arise when the trimer size

approaches the harmonic oscillator length. For the states with positive energy, the spacing

between consecutive states is approximately 2Eho [221–223].

We now connect the energy spectrum for the Gaussian interaction model VG with that

for the zero-range model. In free-space, the three-body system with pairwise Gaussian

interaction supports infinitely many states. The spacing between the ground state and the

first excited state at unitarity is (22.98)2 and between the energies of the first excited state

and the second excited state is (22.7)2. These values are close to the universal scaling factor.

Indeed, the Gaussian interaction model has been used extensively in the literature to describe

Efimov physics [7, 78, 224]. For the trapped system, the ratio between the range r0 of the

two-body interaction and the harmonic oscillator length comes into play. The circle, square

and triangle in Fig. 5.1 show the relative energy of the lowest state of the trapped system

for r0/aho = 0.06, 0.08 and 0.1, respectively. Assuming that the zero-range energy spectrum

provides a reasonable description, Fig. 5.1 allows us to estimate the three-body phase.
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Figure 5.2: Hyperradial density Phyper(R) for three identical bosons at unitarity. Solid and
dotted lines show the PIMC results at kBT/Eho = 0.4 for the Gaussian model potential with
r0/aho = 0.06 and 0.1, respectively (in the main panel, the curves are indistinguishable on the
scale shown). The main panel and the inset show the same data but use a different scaling:
The main panel uses units derived from the energy of the three-boson system at T = 0
while the inset employs harmonic oscillator units. For comparison, the dashed line shows
the hyperradial density obtained using the zero-range pseudopotential with κ∗ determined
by the relative energy of the finite-range potential.

For our purposes, the size of the trimer compared to the range of the interaction is

relevant. For the three r0 considered, the size of the lowest trimer, as measured by the

expectation value of the hyperradius R, is roughly 0.160aho, 0.212aho and 0.266aho, i.e., the

trimers are much smaller than aho, and thus very close to the free space trimers. The lowest

Efimov trimer is only a bit larger than r0 (the size is about 2.66r0 for all cases), implying that

we expect finite-range effects to be non-negligible. Indeed, Fig. 5.2 shows that the hyperradial

densities of the lowest state of the finite-range three-body system (solid and dotted lines)

differ notably from the hyperradial density of the zero-range system (dashed line). This

difference cannot be attributed to the fact that the hyperradial densities are calculated at

finite temperature (the finite-range T = 0 hyperradial densities are, on the scale chosen,

indistinguishable from those shown in Fig. 5.2) but is due to finite-range effects. Despite

these finite-range corrections, the Gaussian interaction model allows us to gain insights into

finite-temperature effects that are governed by the lowest Efimov state of the three-body

system (see Sec. 5.4 for details).
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5.2.3 PIMC approach

This section reviews the finite-temperature continuous-space PIMC approach [19]. The key

idea behind the PIMC approach is to convert the calculations at low temperature (large β)

into a series of calculations at high temperature. Specifically, the PIMC approach rewrites

exp(−βĤ) in terms of the product
∏M

j=1 exp(−τĤ), where τ = β/M . The idea is to use

a sufficiently small τ (sufficiently large integer M) so that the integrals involving τ can be

factorized with controllable error. In the calculations reported in Sec. 5.4, we use M ≈

400− 7000 (the actual number used depends on the temperature T and the two-body range

r0). Inserting
∫
j
|Rj〉 〈Rj| repeatedly, Eq. (5.13) becomes [19]

〈Ô〉 = Z−1

∫
dR0 . . . dRMρ(P̂R0,R1; τ)×

ρ(R1,R2; τ)× . . .

×ρ(RM−1,RM ; τ) 〈RM | O |R0〉 . (5.19)

To evaluate expectation values of operators that probe the diagonal but not the off-diagonal

elements of the real-space density matrix, only closed paths with P̂R0 = RM are needed.

The density matrix ρ(Rj−1,Rj; τ) is, in general, unknown. Using the second- or fourth-order

factorization [19, 112, 158], the high-temperature density operator can be divided into the

non-interacting and interacting parts,

exp
[
−τ(Ĥ0 + V̂ )

]
= exp

(
−τ V̂

2

)
exp

(
−τĤ0

)
×

exp

(
−τ V̂

2

)
+ · · · (5.20)
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and

exp
[
−τ(Ĥ0 + V̂ )

]
= exp

(
−τ V̂

6

)
exp

(
−τ Ĥ0

2

)
×

exp

(
−τ 2Ṽ

3

)
exp

(
−τ Ĥ0

2

)
exp

(
−τ V̂

6

)
+ · · · , (5.21)

where Ṽ is given by V̂ + τ 2[V̂ , [Ĥ0, V̂ ]]/48. For observables that are determined by the

diagonal elements of the density matrix, these factorizations yield errors that scale as τ 3 and

τ 5, respectively [112]. The non-interacting part of the density matrix in the position basis

can be written compactly [20, 207],

〈R|e−τĤ0|R′〉 = a−3N
ho

[
2π sinh(β̃)

]−3N/2

×

exp

[
−(R2 + R′2) cosh(β̃)− 2R ·R′

2 sinh(β̃)a2
ho

]
. (5.22)

Here, β̃ denotes the dimensionless inverse temperature, β̃ = βEho. The potential dependent

part of the density matrix reduces to evaluating the potential at the given configuration.

The energy and structural expectation values are calculated following standard proce-

dures [19]. The superfluid fraction is calculated using the area estimator [19, 94, 191]. The

superfluid density is calculated following Ref. [195]. The condensate fraction requires off-

diagonal elements of the density matrix, i.e., open paths [225]. We have not yet implemented

this.

In the high temperature limit, the particle statistics becomes negligible and the system

behaves, to leading order, as a non-interacting gas of Boltzmann particles. To analyze the

effects of the particle statistics for systems with two or more identical particles in the low

temperature regime, we find it useful to divide the partition function Z into “even” and
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“odd” contributions (a closely related definition can be found in Ref. [97]),

Z = Zeven ± Zodd, (5.23)

where

Zeven =
∑
Peven

∫
dRρ(P̂R,R, β) (5.24)

and

Zodd =
∑
Podd

∫
dRρ(P̂R,R, β); (5.25)

the plus and minus sign apply if the system contains identical bosons and fermions, respec-

tively (here and in the remainder of this section we assume that the system contains only one

type of identical particles). The sum over Peven includes the permutations that are character-

ized by even NI(σ) and the sum over Podd includes the permutations that are characterized

by odd NI(σ). The sum over Podd is only non-zero if the system under study contains two

or more identical particles. When the temperature is high, only the identity permutation

(and thus only the first term) contributes, i.e., the statistics is suppressed and the system

behaves like a Boltzmann gas. As the temperature decreases, the relative importance of

the second term increases. In the zero temperature limit, the two terms contribute equally.

We define the statistical factor S as the normalized ratio of the “even” and “odd” partition

functions [97] [226],

S =
Zeven − Zodd

Zeven + Zodd

. (5.26)

The statistical factor S approaches 1 in the high-temperature limit and 0 in the zero-

temperature limit. Since the partition function enters into the denominator of the thermal

expectation values, the statistical factor characterizes the numerical demands on the simula-

tion for systems with identical fermions. The smaller S is, the harder the simulation is. As a
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Figure 5.3: Statistical factor S for the (N − 1, 1) system with interspecies potential VG

with r0 = 0.06aho and 1/as = 0. Squares, crosses, triangles, and circles show the statistical
factor S as a function of (a) the temperature T and (b) the inverse temperature T−1 for
N = 3, 4, 5, and 6, respectively.

rule of thumb, if we compare the S value for the same system at two different temperatures,

then the simulation time required to obtain comparable accuracy for the observables at the

two temperatures is (Shigh/Slow)2 times larger at the lower temperature than at the higher

temperature (here, Shigh and Slow are the S values at the higher and lower temperature,

respectively). This phenomenon is known as the Fermi sign problem [97, 99, 134, 135]. A

related interpretation of S is in terms of the “quantum statistics” of the system under study.

For both bosons and fermions, a value of S around 1 indicates that the particles approx-

imately follow Boltzmann statistics while a value of S close to 0 indicates that exchange

effects play an important role.

Figure 5.3(a) shows the statistical factors as a function of the temperature for the N

particle system consisting of N − 1 identical particles and one impurity. The identical

particles do not interact while the unlike particles interact through a Gaussian potential with

r0 = 0.06aho and infinite s-wave scattering length. The statistical factor deviates notably
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from one when the temperature is of the order of the “Fermi temperature” or lower. The

Fermi temperature is equal to 5Eho/2 to 7Eho/2 for the (N − 1, 1) systems with N = 3− 6.

At low temperature, the statistical factor depends exponentially on the inverse temperature,

i.e., S ∝ exp(−βαN) [97], where αN increases faster than linear with increasing N . We have

performed reliable calculations for the symbols shown in Fig. 5.3. The lowest temperature

that can be reached depends, of course, on the available computational resources. However,

since the Fermi sign problem increases exponentially with decreasing temperature, the lower

T limit shown in Fig. 5.3 is somewhat generic. The physics of the (N − 1, 1) systems with

Bose, Fermi and Boltzmann statistics is discussed in more detail in Sec. 5.4.2.

5.3 Condensate and superfluid fractions of the two-

body system

The condensate and superfluid fractions are distinct physical quantities that vanish when the

de Broglie wave length is small but differ from zero when the de Broglie wave length is large.

This section compares the condensate and superfluid fractions for the simplest interacting

system, namely for two particles in a harmonic trap with zero-range s-wave interactions.

For this system, the eigen spectrum and eigen functions are known in compact analytical

form [145], which facilitates the calculation of nc and ns over a wide temperature range. The

superfluid fraction is calculated using the energy eigen states in the moment of inertia based

definition [see Eq. (5.14)].

An important point of this section is that the superfluid and condensate fractions are

meaningful quantities not just for large systems but also for small systems. We will show

in Sec. 5.4.1 that the superfluid fraction of the N boson system is, for certain parameter

combinations, approximated well by that of a single particle. The superfluid fraction reflects

symmetry properties of the system [216, 227, 228]. The connection between superfluidity
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and angular momentum decoupling mechanisms, e.g., has been discussed in some detail in

the context of small doped bosonic helium droplets [229, 230]. The condensate fraction

is given by the largest eigen value of the one-body reduced density matrix ρred or, equiv-

alently, the largest occupation number of the natural orbitals [29–31]. Since the natural

orbitals are defined by decomposing the reduced density matrix in a specific way, the oc-

cupation numbers, and hence the condensate fraction, can be interpreted as a particular

measure of the particle-particle correlations of the system. Our approach for determining

the finite temperature reduced density matrix of the two-body system (which is discussed in

the following paragraphs) also allows one to determine entanglement measures such as the

concurrence [231] and negativity [232] of the two-particle system over a wide temperature

range. Such calculations appear to have been challenging in the past [233].

The reduced density matrix ρred for the two-particle system reads

ρred(r′1, r1, β) = Z−1

∫
dr2ρ(r′1, r2, r1, r2, β). (5.27)

Using the separation of the center of mass and relative coordinates, Eq. (5.27) becomes

ρred(r′1, r1, β) =

Z−1

∫
dr2ρrel(r

′
rel, rrel, β)ρcm(r′cm, rcm, β), (5.28)

where rrel = r1 − r2, r′rel = r′1 − r2, 2rcm = r1 + r2, 2r′cm = r′1 + r2,

ρrel(r
′
rel, rrel, β) =∑

ilm

e−βEi,lψ∗ilm(r′rel)ψilm(rrel), (5.29)
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and

ρcm(r′cm, rcm, β) =∑
QLM

e−βEQ,Lψ∗QLM(r′cm)ψQLM(rcm). (5.30)

In Eq. (5.30), EQ,L denotes the center-of-mass eigen energy, which can be conveniently

written in terms of the principal quantum number Q (Q = 0, 1, · · · ) and the center of mass

angular momentum quantum number L (L = 0, 1, · · · ), EQ,L = (2Q + L + 3/2)Eho. The

energies are independent of the projection quantum number M (M = −L,−L + 1, · · · , L).

In Eq. (5.29), Ei,l denotes the relative eigen energy. For two Boltzmann particles, all l

values are allowed. For two identical bosons, in contrast, only even l values are allowed.

For finite relative angular momentum l, the relative energy reads Ei,l = (2i + l + 3/2)Eho,

where i = 0, 1, · · · . For l = 0, i denotes a non-integer quantum number whose values are

determined semi-analytically by solving a transcendental equation [145]. As in the center

of mass case, the relative energies are independent of the projection quantum number m

(m = −l,−l + 1, · · · , l).

To evaluate ρrel, we use the fact that the l > 0 states are not affected by the zero-range

interactions and write ρrel = ρl>0,NI
rel +ρl=0,int

rel , where ρl>0,NI
rel denotes the l > 0 contributions to

the density matrix (these contributions are independent of the s-wave scattering length) and

ρl=0,int
rel the l = 0 contribution that depends on as. To evaluate the latter, it is convenient to

project the interacting l = 0 energy eigen states onto the non-interacting harmonic oscillator

states, ψi00(rrel) =
∑∞

q=0C
(i)
q ψq00(rrel), where q = 0, 1, · · · . The expansion coefficients C

(i)
q

are known analytically [145, 149]. Now that ρcm and ρrel are expressed in terms of the non-

interacting wave functions in the relative and center of mass coordinates, the integral over

dr2 can be performed by reexpressing, using the Talmi-Moshinsky brackets [234, 235], the

harmonic oscillator eigen states in the relative and center of mass coordinates in terms of the

harmonic oscillator eigen states in the single particle coordinates. After integrating over dr2,
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Figure 5.4: The lines show (a) the condensate fraction nc and (b) the superfluid fraction ns
as a function of the temperature T for two Boltzmann particles with zero-range interaction for
various as. The solid, dotted, dashed, dash-dotted, dash-dot-dotted, and dash-dash-dotted
lines are for aho/as = −∞,−2, 1, 0, 1, and 2, respectively. In panel (b), the dependence on as
is small. The insets compare (a) the condensate fraction nc and (b) the superfluid fraction
ns for two Boltzmann particles (lines; these are the same data as shown in the main parts
of the figure) and two identical bosons (squares and circles correspond to aho/as = −∞ and
0, respectively) as a function of the temperature.

we project the reduced density matrix onto single-particle states in the r1 coordinate. Using

the orthogonality of the Clebsch-Gordon coefficients as well as other standard identities from

angular momentum algebra, the calculation of the matrix elements simplifies dramatically.

The resulting one-body density matrix is found to be block diagonal in the l and m quantum

numbers. Furthermore, since the lowest l = 0 state always minimizes the energy, the largest

occupation number comes from the (l,m) = (0, 0) submatrix. The results discussed in the

following are obtained by diagonalizing a 20 × 20 submatrix. Increasing the matrix size to

50× 50 changes the results by less than 1%.

The main panel of Fig. 5.4(a) shows the condensate fraction nc for two Boltzmann par-

ticles as a function of the temperature for various s-wave scattering lengths as. Solid,

dotted, dashed, dash-dotted, dash-dot-dotted and dash-dash-dotted lines are for aho/as =
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−∞,−2,−1, 0, 1, and 2, respectively. As the temperature increases, the condensate fraction

nc decreases for all interaction strengths. At zero temperature, nc decreases as the inverse

scattering length increases. At finite temperature, however, we observe in some cases [see

the kBT ≈ Eho/2 to Eho regime in Fig. 5.4(a)] that the condensate fraction increases slightly

as |as| (as < 0) increases. This is caused by the interplay of the interaction energy and the

temperature dependent Boltzmann weight.

The condensate fraction for two identical bosons is very similar to that for two Boltzmann

particles. The inset of Fig. 5.4(a) compares the condensate fraction for two identical bosons

(symbols) with those for two Boltzmann particles (lines) for aho/as = −∞ and 0, respectively.

It can be seen that the condensate fraction for two identical bosons falls off slightly slower

with increasing temperature than that for two Boltzmann particles. This is because the

Bose statistics excludes the states with odd relative angular momentum l, implying that the

l = 0 states (which are responsible for the non-zero condensate fraction) are relatively more

important for two identical bosons than for two Boltzmann particles.

For comparison, Fig. 5.4(b) shows the superfluid fraction ns for two Boltzmann particles

for the same scattering lengths. The superfluid fraction ns depends weakly on the s-wave

scattering length. Specifically, the superfluid fraction approaches 1 in the low temperature

regime for all s-wave scattering lengths. This is a consequence of the fact that the lowest

energy eigen state has vanishing total orbital angular momentum for all s-wave scattering

lengths. The inset of Fig. 5.4(b) compares the superfluid fraction for two Boltzmann particles

(lines) with those for two identical bosons (symbols). As in the case of the condensate

fraction, the switch from Boltzmann to Bose statistics changes the superfluid fraction only

by a small amount.

A comparison of Figs. 5.4(a) and 5.4(b) shows that the condensate and superfluid frac-

tions are distinctly different quantities. When the two-body system forms a molecule (for

positive as), the condensate fraction is small. The superfluid fraction, in contrast, remains
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approximately 1 in the low temperature regime, indicating that the response to an infinites-

imal rotation is largely independent of the size of the system (the density decreases with

increasing 1/as) and instead largely determined by its spherical shape.

Next, we consider two identical fermions. Naively, this system might be thought to be

“uninteresting” since the Pauli exclusion principle prohibits scattering in the s-wave channel.

As we show now, two non-interacting identical fermions display intriguing temperature-

dependent behaviors. For two identical non-interacting fermions, the condensate fraction

equals 1/2 at T = 0 and decreases monotonically. The superfluid fraction displays [see

Fig. 5.5(c)] a non-monotonic dependence on the temperature. As expected, ns is zero in the

high T limit, increases to around 0.2 at kBT = Eho/2, and then diverges to −∞ in the zero

temperature limit. As discussed in Ref. [228], this behavior can be understood by analyzing

the classical moment of inertia Ic and the quantum moment of inertia Iq [see the Figs. 5.5(d)

and 5.5(e), respectively]. Specifically, the fact that the lowest energy eigen state has Ltot = 1

is responsible for the increase of Iq at low temperature. Motivated by the nuclear physics

literature [180, 183], we refer to this behavior as “abnormal”.

The fact that the superfluid fraction for two identical fermions becomes negative in the

low-temperature regime can be understood as follows [228]. Two identical bosons at low

temperature do not respond to an infinitesimal external rotation (ns → 1 as T → 0) since

the lowest energy eigen state has Ltot = 0. Two identical fermions at low temperature,

however, do respond to an infinitesimal external rotation (ns → −∞ as T → 0) since the

lowest energy eigen state has Ltot = 1. The physical picture is that the system “speeds up”

faster than we would expect for a normal fluid with the same classical moment of inertia [228].

To gain further insight into the superfluid properties of the fermionic system, we analyze

the radial and superfluid densities. The radial densities for particles 1 and 2 are identical

and the subscript j of rj will be dropped in what follows. Solid, dotted and dashed lines

in Fig. 5.5(a) show the scaled radial density 4πρrad(r)r2 for kBT/Eho = 0.5, 0.26459, and

141



0

1

2

4
π

ρ
ra

d
(r

) 
r2

a h
o

0 0.5 1
k

B
T / E

ho

-1

0

1

n
s

0 2 4 6 8
r / a

ho

-2

-1

0

4
π

ρ
s(r

) 
r2

a h
o

0 0.5 1
k

B
T / E

ho

0

4

8

I c /
 (

m
a h

o2
 )

0 0.5 1
k

B
T / E

ho

0

4

8
I q

 /
 (

m
a h

o2
 )

(a)

(b)

(c)

(d)

(e)

Figure 5.5: Panels (a) and (b) show radial densities for two identical non-interacting
fermions. Solid, dotted, and dashed lines show (a) the scaled radial total density and (b) the
scaled radial superfluid density, for kBT/Eho = 0.5, 0.26459, and 0.2, respectively. In panel
(a), the dotted line is hardly distinguishable from the dashed line. The solid lines in panels
(c), (d), and (e) show (c) the superfluid fraction ns, (d) the classical moment of inertia Ic,
and (e) the quantum mechanical moment of inertia Iq as a function of the temperature T .
The diamond, square and circle mark the temperatures considered in panels (a) and (b).
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0.2, respectively. The radial density is fairly insensitive to the temperature. The radial

superfluid density [see Fig. 5.5(b)], in contrast, changes notably with the temperature. This

is not unexpected since the superfluid fraction varies strongly in the low temperature regime.

The radial superfluid density takes negative values near the trap center and positive values

near the edge of the cloud. The oscillation of the radial superfluid density reflects the fact

that the lowest energy eigen state has total angular momentum quantum number Ltot = 1.

For large r, the probability of finding two particles close to each other is extremely low. This

translates into the Fermi statistics playing a negligible role. On the other hand, we expect

that the Fermi statistics is much more important near the trap center. In the language of path

integrals, the “permuted paths” (i.e., the paths that come from exchanging particles 1 and 2

and thus contribute with a negative sign to the partition function) are largely concentrated

near the center. These “permuted paths” contribute negatively to the area estimator and

span larger areas compared to the “unpermuted paths”. As a consequence, the superfluid

density is negative near the trap center.

The analysis presented here for two non-interacting identical fermions can be extended

to two-component Fermi gases with interspecies s-wave interactions consisting of N = 3 or

more particles. Selected results were presented in our earlier work [228]. We anticipate that

the analysis of the superfluid properties presented in the previous paragraphs for two non-

interacting fermions will inspire other studies, for bosons or fermions, that are concerned

with understanding the distribution of the superfluid properties in finite sized systems or

systems with interfaces [176, 177, 195, 217, 218, 229, 236–238].
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Figure 5.6: Energies as a function of the temperature T for three identical bosons at
unitarity interacting through VG with different r0. Circles and squares show the PIMC
results for r0/aho = 0.06 and 0.08, respectively. For comparison, the solid and dotted lines
show the result obtained using the droplet state plus center of mass excitations. The dashed
line shows the thermally averaged energy for three identical non-interacting bosons. Dash-
dot-dotted and dash-dotted lines show results obtained using the simple combined model for
r0/aho = 0.06 and 0.08 (see the text for discussion).

5.4 N-body systems

5.4.1 N identical bosons

This section discusses the temperature dependent properties of N identical bosons under ex-

ternal spherically symmetric harmonic confinement interacting through the Gaussian model

potential VG with infinite s-wave scattering length. Circles and squares in Fig. 5.6 show

the energy of the three-boson system, obtained from the PIMC simulations, as a function

of the temperature for r0/aho = 0.06 and 0.08, respectively. For both ranges, the energy

shows three distinct regions. The energy increases approximately linearly at small T , turns

up relatively sharply around kBT = 4Eho or 3Eho, and then changes again linearly. The

energy at low temperature—if expressed in harmonic oscillator units—shows a strong range

dependence. The energy at high temperature, in contrast, is to leading order independent

of r0. We refer to the rapid change of the energy from one approximately linear regime to

the other approximately linear regime as a phase transition like feature.

We now introduce a simple parameter-free model that reproduces the energy curves semi-
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quantitatively (see the dash-dot-dotted and dash-dotted lines in Fig. 5.6). The assumptions

going into the model are that the low-temperature behavior is governed by the properties

of the lowest Efimov trimer and that the high-temperature behavior is governed by the

properties of the non-interacting three-boson gas. Treating only the lowest Efimov trimer

state and its center of mass excitations, we obtain the solid and dotted lines in Fig. 5.6

for r0/aho = 0.06 and 0.08, respectively. These thermally averaged energies are obtained

using the lowest eigen energy of the trapped three-boson system, i.e., using the eigen en-

ergy of the state that shows Efimov characteristics, and summing over the center of mass

excitations. The dashed line shows the thermally averaged energy of three non-interacting

identical bosons. If we combine these two limiting behaviors, the model partition function

Zmodel reads

Zmodel(β) = Zdroplet(β) + Zgas(β), (5.31)

where Zdroplet(β) = z(β) exp(−βEdroplet) and Zgas(β) = [z3(β) + 3z(2β)z(β) + 2z(3β)]/6.

Here, Edroplet denotes the lowest relative eigen energy of the three-boson system and z(β)

the partition function of a single harmonically trapped particle. The second and third terms

in Zgas originate from the symmetrization of Zgas. The resulting energies are shown in Fig. 5.6

by the dash-dot-dotted and dash-dotted lines for r0/aho = 0.06 and 0.08, respectively. The

agreement between this simple combined model and the PIMC calculations is very good.

One may ask why the simple combined model works so well. We attribute this to primarily

two things. First, for the examples shown in Fig. 5.6 the energy separation between the

lowest Efimov trimer state and the gas-like states is large (the case where |Edroplet| is not

much larger than Eho is briefly discussed at the end of this section). Second, although the

system is strongly-interacting, the non-interacting Bose gas model describes the density of

states approximately correctly. The reason is that a significant fraction of the states is not

affected by the s-wave interactions [146]. In fact, if we replace the partition function Zgas

145



-100

0

100

200

E
 /

 E
h

o

0 5 10
k

B
 T / E

ho

1

10

100

C
v
 /

 k
B

(a)

(b)

Figure 5.7: Phase transition like feature for N identical harmonically trapped bosons
interacting through VG with 1/as = 0. (a) Circles and squares show the energy obtained
by the PIMC approach for r0 = 0.1aho and N = 3 and 4, respectively, as a function of the
temperature T . The dotted, solid, and dashed lines show the energies for N = 3, 4, and 5
obtained using the simple combined model. (b) The dotted, solid and dashed lines show the
heat capacity Cv for N = 3, 4, and 5, respectively, as a function of T .

for the non-interacting Bose gas by the partition function for the non-interacting Boltzmann

gas, then the model predicts that the energy changes rapidly at a lower temperature than

predicted by the PIMC results. If, on the other hand, we replace the partition function

Zgas for the non-interacting Bose gas by a partition function for three identical bosons that

accounts for the s-wave interactions in an approximate manner (we reduce the energy of all

states that are affected by the s-wave interactions by Eho), the resulting energy curves are,

on the scale of Fig. 5.6, indistinguishable from the dash-dot-dotted and dash-dotted curves.

Circles and squares in Fig. 5.7(a) show the thermally averaged PIMC energies for the

Gaussian model interaction with r0/aho = 0.1 and 1/as = 0 for N = 3 and 4, respectively. As

the three-boson system, the four-boson system displays a “phase transition like” feature. To

model four- and higher-body boson systems, we generalize the combined model introduced

above as follows. In Eq. (5.31), Zdroplet(β) now denotes the partition function determined by
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the lowest N -boson energy state plus center of mass excitations and Zgas(β) denotes the par-

tition function of the non-interacting N -boson gas. As above, Zgas is properly symmetrized.

The solid line in Fig. 5.7(a) shows the resulting energy for the four-boson system. The agree-

ment with the PIMC results is good. It should be noted that the combined model neglects,

for systems with N > 3, a large number of states. For example, for the four-boson system, it

neglects the excited four-boson Efimov state whose energy is, in the universal regime, 1.002

times the trimer energy [239] as well as “atom-trimer states” that can be approximately

described as consisting of an Efimov trimer with the fourth particle occupying one of the

harmonic oscillator states. These states contribute relatively little to the partition function

for two reasons. First, the separation between the four-body ground state energy and the

energy of the excited tetramer and the separation between the four-body ground state en-

ergy and the atom-trimer states is large (the factor for the former is 4.61 in the universal

regime [239]). Second, the density of states of the atom-trimer states is negligible compared

to the density of states of the gas-like boson-boson-boson-boson states. We conjecture that

the combined model also provides a good description for larger Bose systems. We stress that

the combined model is fully analytical, provided that the eigen energy of the lowest N -body

state, which can be considered as being tied to the lowest trimer eigen state, is known. The

dashed line in Fig. 5.7(a) shows the energy for N = 5 bosons interacting through VG with

r0/aho = 0.1 and 1/as = 0 as a function of the temperature. This curve is obtained using

the combined model with the eigen energy of the lowest N = 5 energy eigen state as input

(see Table 5.1 for the energy).

Figure 5.7(a) shows that the phase transition like feature for fixed r0 moves to higher

temperature with increasing N . To estimate the transition temperature Ttr, we calculate

the heat capacity Cv, Cv = ∂E/∂T . The dotted, solid and dashed lines in Fig. 5.7(b)

show Cv, obtained using the combined model for the thermally averaged energy [see lines

in Fig. 5.7(a)], as a function of the temperature for N = 3, 4, and 5, respectively. The

147



0 5 10 15

N

0

10

20

30

k
B
T

tr
 /

 E
h

o
0 5 10 15

N

0

1

2

k
B
T

tr
 /

 |
E

tr
im

e
r|

Figure 5.8: Transition temperature Ttr for N identical bosons in a harmonic trap at unitarity
as a function of N . The transition temperature is calculated using the simple combined
model. The circles show Ttr using the droplet energies for the Gaussian two-body interaction
model employed in this work. For comparison, the squares show Ttr using the droplet energies
for a model Hamiltonian with attractive two-body and repulsive three-body interactions [7]
(to obtain the squares, the three-body eigen energy Edroplet = Etrimer is chosen such that it
agrees with that for the Gaussian two-body interaction model, i.e., the circle and the square
agree for N = 3).

heat capacity curves show distinct maxima. We define the transition temperature Ttr as the

temperature at which the heat capacity takes on its maximum.

The circles in Fig. 5.8 show the transition temperature for N bosons interacting through

VG with r0/aho = 0.1 and 1/as = 0 as a function of N . To obtain the transition temperature,

we extrapolate the PIMC energies at low temperature to the zero temperature limit. The

resulting zero-temperature energies Edroplet are reported in Table 5.1. We find that the energy

Edroplet scales with the number of pairs, i.e., as N(N −1)/2. This implies that the transition

temperature increases linearly with increasing N .

Since the N -body droplet states are only somewhat larger than r0, the Gaussian in-

teraction model employed in our work suffers from finite-range effects and provides only

an approximate description of the N -body Efimov scenario. Note that the recent work by

Gattobigio and Kievsky [1] suggests a means to correct for these finite-range effects. Here,

we pursue a different approach. To see how the transition temperature changes when the

droplet energies scale to leading order linearly with N—which is one of the scalings that
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Table 5.1: Relative zero-temperature energy Edroplet for N bosons interacting through the
Gaussian potential VG with diverging s-wave scattering length. The energies in columns 2
and 5 are obtained by extrapolating the PIMC results to T = 0. The energies are expressed in
units of the short-range energy scale Esr, Esr = ~2/(mr2

0). Column 3 reports the energies from
Ref. [1]; no errorbars are reported in that reference. For comparison, our basis set expansion
approach (see Ref. [2] for a discussion of the approach) yields Edroplet/Esr = −0.11923(1)
and −0.70173(5) for N = 3 and 4, respectively.

N Edroplet/Esr Ea/Esr N Edroplet/Esr

3 −0.1191 7 −6.544(11)
4 −0.700(4) −0.70 8 −10.075(16)
5 −1.9127(5) −1.92 9 −14.48(2)
6 −3.839(6) −3.84 10 −19.76(4)

has been proposed to hold in the fully universal Efimov scenario [7] [240]—, we apply our

combined model to the data of Ref. [7]. In that work, the N -boson system was assumed to

interact through a combination of two- and three-body potentials. The resulting transition

temperature Ttr is shown by squares in Fig. 5.8. The two cases display different large N

behavior: The transition temperature increases roughly linearly with N for the Gaussian

two-body model interaction but increases much slower for the system with two- and three-

body interactions. We note that the finite temperature behavior of the trapped N = 100

Bose system was investigated by Piatecki and Krauth using the PIMC approach [241]. In the

regime where |Etrimer| is much larger than Eho, Ref. [241] finds, in agreement with our work,

a transition from a droplet state to a gas-like state. Reference [241] refers to the phase that

is governed by the droplet state as Efimov liquid phase. We emphasize that our calculations

neglect decay to non-universal states. Such states would need to be accounted for if one

wanted to analyze the stability of the droplet phase.

We now discuss the system characteristics below and above Ttr in more detail. As already

mentioned in Sec. 5.2.2, the hyperradial distribution functions Phyper(R) for the three-boson

system interacting through VG with ranges r0 = 0.06aho and 0.1aho at low temperature (see

Fig. 5.2 for kBT = 0.4Eho) are essentially identical to the free-space three-boson systems with

the same r0 at zero temperature. Figure 5.9 shows the temperature dependence of Phyper(R)
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Figure 5.9: Hyperradial density Phyper(R) for three identical bosons at unitarity interacting
through VG with r0 = 0.06aho for various temperatures T . Dash-dash-dotted, solid, dotted,
dashed, and dash-dotted lines are for kBT/Eho = 3, 4, 5, 6, and 7, respectively. Panel (a)
shows the small R region while panel (b) shows the large R region. Note that panels (a) and
(b) have different scales for the x-axis and the y-axis.
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Figure 5.10: Superfluid fraction ns as a function of the temperature T for N identical bosons
at unitarity. The circles and squares show the PIMC results for the Gaussian potential VG

with r0 = 0.1aho for N = 3 and 4, respectively. The errorbars are smaller than the symbol
size. For comparison, the solid line shows the result obtained using a single-particle model
(see text for discussion).

for N = 3 and r0 = 0.06aho. The dash-dash-dotted line shows the hyperradial distribution

function for kBT = 3Eho, i.e., for a temperature below Ttr. For this temperature, Phyper(R)

exhibits a maximum at R ≈ 0.15aho and falls off monotonically at larger R. For slightly larger

T , i.e., kBT = 4Eho (solid line), the maximum at R ≈ 0.15aho is smaller and a second peak at

R ≈ 4− 5aho appears. At yet higher T (above the transition temperature), the amplitude of

the large R peak is more pronounced and the hyperradial distribution function resembles that

of a gaseous system. The temperature dependence of the hyperradial distribution function

for the N = 3 system supports our interpretation introduced above, namely, the notion that

the system undergoes a transition from an Efimov trimer to a gas state as the temperature

changes from below to above Ttr. The hyperradial distribution functions for larger systems

show analogous behavior, i.e., they support the notion that the system undergoes a transition

from an N -body droplet state to a gas state with increasing temperature.

To further characterize the properties of the N -boson system, symbols in Fig. 5.10 show

the superfluid fraction ns as a function of the temperature for N = 3 and 4 obtained using

the PIMC approach (here, r0 = 0.1aho and 1/as = 0). The superfluid fractions for these

two system sizes seem to fall on one curve. The solid line, which is obtained analytically

151



(see below for the model that produces the solid line), provides a good description of the

numerical data. Figure 5.10 suggests that the superfluid fraction approaches one in the

zero temperature limit and is smaller than 0.05 for kBT & 2Eho. From Figs. 5.6 and 5.7

and the surrounding discussion, we know that the temperature regime kBT . 2Eho is—for

the parameters considered—well described by the partition function Zdroplet, i.e., the system

behavior is dominated by the lowest N -droplet energy eigen state and its center of mass

excitations. In particular, this means that the droplet itself can be considered as “frozen”.

Correspondingly, we expect that the behavior of the superfluid fraction displayed in Fig. 5.10

is approximately described by that of a single harmonically trapped particle of mass Nma

(see the solid line in Fig. 5.10). We observe that the PIMC points lie slightly above the solid

line. This could be due to the fact that the classical moment of inertia calculated using the

single-particle framework is slightly smaller than the classical moment of inertia calculated

using the full Hamiltonian.

We now relate the fall off of the superfluid fraction to the transition temperature. As

discussed above, the fall off of ns is governed by center of mass excitations, i.e., the relevant

temperature scale is set by the harmonic oscillator frequency. To make some estimates, we

say that the superfluid fraction, defined through the moment of inertia, is “undetectably

small” for kBT around 2Eho, independent of the number of particles and interaction model.

This estimate assumes that the absolute value of the eigen energy of the lowest droplet

state is large enough for Zdroplet to provide a reasonably accurate description of the low

temperature dynamics. For the three- and four-body systems, this implies that |Edroplet| has

to be larger than a few times Eho. For cold atom systems, the three-body parameter is found

to be approximately universal [77, 78, 242], i.e., a− ≈ −9.7RvdW, where RvdW denotes the

van der Waals length and a− the scattering length at which the Efimov trimer merges with

the three-atom continuum. Using this approximate universality together with the known

relation between a− and κ∗ [41], we estimate that Etrimer is roughly equal to −0.024EvdW at
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unitarity. Here, EvdW is defined as EvdW = ~2/(maR
2
vdW). For Cs in a spherically symmetric

harmonic trap with a frequency ν ≈ 2kHz (a value that can be reached easily), the Efimov

trimer would have an energy of about −33Eho (the system is approximately described by the

circles in Fig. 5.6). For these experimental conditions, the superfluid fraction is vanishingly

small for T & Ttr.

A key ingredient of the above analysis is that the fall off of the superfluid fraction is

due to the center of mass excitations. This suggests an alternative viewpoint that defines

the superfluid fraction with respect to the relative degrees of freedom only. If we replace

the z-component L̂tot,z of the total orbital angular momentum operator in Eq. (5.15) by the

z-component of the relative orbital angular momentum operator and modify the definition

of the classical moment of inertia accordingly, then we find that the fall off of the superfluid

fraction is correlated with the transition temperature. The spirit of the latter approach

underlies the arguments of Ref. [241], which considers a Bose gas with N = 100 and refers

to the phase governed by the N -droplet state as superfluid phase. We emphasize, however,

that Ref. [241] did not perform any quantitative calculations of the superfluid fraction or

superfluid properties of the system. Instead, Ref. [241] put forward qualitative arguments

based on the exchange paths.

We reiterate that the combined model breaks down when |Edroplet| is not much larger

than Eho, i.e., when the size of the trimer approaches the harmonic oscillator length. In

this case, the lowest Efimov trimer does not define a separate energy scale and the phase

transition like feature discussed in this work disappears. Qualitatively, we expect that the

Bose gas with N = 3, 4, · · · changes from having a significant superfluid fraction to a small

superfluid fraction as the temperature increases from zero to a few times Eho. The N = 100

case has been considered in Ref. [241].
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5.4.2 Single-component gas with a single impurity

This section considers a single-component gas consisting of N−1 particles with an impurity.

We assume that the impurity interacts with the N − 1 “background” atoms through the

Gaussian potential VG with diverging s-wave scattering length as. The background atoms

do not interact with each other. Our goal is to investigate the temperature-dependence of

the system properties as the statistics of the N − 1 background atoms changes from Bose to

Boltzmann to Fermi statistics. As before, we consider equal mass systems. Efimov trimers

do not exist for two identical fermions and a third distinguishable particle (in our case,

the impurity) [41, 243]. For two identical bosons and a third particle or two Boltzmann

particles (i.e., two distinguishable particles) and a third particle, however, Efimov trimers

can exist [244]. An interesting question is thus how the finite temperature properties of the

(N − 1, 1) system with N ≥ 3 depend on the statistics.

From the discussion in the previous subsection it is clear that the properties of the trimer

at low temperature determine the characteristics of larger Bose systems provided |Etrimer| is

much larger than Eho. Throughout this section, we consider the situation where the lowest

energy eigen state of the (2, 1) system with Bose statistics has an energy comparable to Eho,

i.e., |Etrimer| ≈ Eho [note, the lowest energy eigen state of the (2, 1) system with Boltzmann

statistics has the same energy]. For the same model interactions, the lowest energy eigen state

of the (2, 1) system with Fermi statistics also has an energy comparable to Eho; the energy

for the system with Fermi statistics is, however, larger than that for the system with Bose

statistics. We will show that the low temperature properties of the (N−1, 1) systems display,

as might be expected naively, statistics dependent characteristics for temperatures around

or below Eho. Concretely, we focus on systems with interspecies Gaussian interactions with

r0 = 0.06aho and 1/as = 0. The relative ground state energy of the harmonically trapped

(2, 1) system with Bose statistics is 0.508Eho [or 141~2/(mr2
0)]. For comparison, the relative

ground state energy of the corresponding free-space system is −18.1~2/(mr2
0), indicating
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that the trap modifies the lowest energy eigen state of the free-space system with Efimov

characteristics. The relative ground state energy of the harmonically trapped (2, 1) system

with Fermi statistics is 2.785Eho. The corresponding free-space system is not bound [76].

Figure 5.11 shows the scaled pair distribution functions r2
j4Ppair(rj4), j < 4, for the (3, 1)

system with r0/aho = 0.06 and 1/as = 0 for different statistics and temperatures. The

dotted, dashed, and solid lines are for Bose, Fermi, and Boltzmann statistics, respectively.

Figures 5.11(a)-5.11(d) are for kBT/Eho = 0.6, 1.2, 2 and 3, respectively. At high temper-

ature [see Fig. 5.11(d)], the pair distribution functions are to a very good approximation

independent of the particle statistics. As the temperature decreases [see Fig. 5.11(c)], the

particle statistics has a visible effect on the pair distribution functions. In the PIMC lan-

guage, the temperature in Fig. 5.11(c) is such that the “permuted paths” contribute only

a small fraction to the partition function. This implies that the particle statistics can be

treated perturbatively, i.e., the partition functions ZBose(β) and ZFermi(β) of the systems

with Bose and Fermi statistics can be written approximately as [ZBoltz(β) ± ∆Z(β)]/3!,

where ZBoltz(β) denotes the partition function of the system with Boltzmann statistics and

∆Z(β) a small correction. The factor of 1/3! arises due to the presence of the three identical

particles (bosons or fermions). Correspondingly, the sum of the energies of the systems with

Bose and Fermi statistics equal, to a good approximation, twice the energy of the system

with Boltzmann statistics. Indeed, for the temperature considered in Fig. 5.11(c), we find

E/Eho = 23.86(2), 23.33(2), and 22.76(1) for Fermi, Boltzmann and Bose statistics, respec-

tively. The energy differences are 0.53(4) and 0.57(3), in agreement with the expectation

based on the perturbative argument.

For yet lower temperatures, the particle statistics becomes non-perturbative. In

Fig. 5.11(b), e.g., the pair distribution functions for the three different statistics differ no-

tably. In Fig. 5.11(a), the pair distribution functions for the systems with Boltzmann and

Bose statistics are nearly indistinguishable and notably different from the pair distribution
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Figure 5.11: Scaled pair distribution functions r2
j4Ppair(rj4) (j < 4) for the (3, 1) system

with interspecies interaction VG with r0 = 0.06aho and diverging interspecies scattering
length as at temperature (a) kBT/Eho = 0.6, (b) kBT/Eho = 1.2, (c) kBT/Eho = 2, and
(d) kBT/Eho = 3. Dashed, solid, and dotted lines are for systems with Fermi, Boltzmann,
and Bose statistics, respectively. The error bars are comparable to or smaller than the line
widths. In panel (a), the solid and dotted lines are hardly distinguishable. In panel (d), all
three lines nearly coincide.

156



0 0.5 1 1.5 2

k
B
T / E

ho

0

0.5

1

n
s

Figure 5.12: Superfluid fraction ns as a function of the temperature T for the (3, 1) sys-
tem with interspecies potential VG with r0 = 0.06aho and 1/as = 0. The circles, crosses,
and squares are obtained from the PIMC simulations with Bose, Boltzmannn, and Fermi
statistics, respectively. The error bars are only shown when they are larger than the symbol
size. For comparison, dotted, solid, and dashed lines show the superfluid fraction for the
non-interacting (3, 1) systems with Bose, Boltzmann, and Fermi statistics, respectively.

function for the system with Fermi statistics. This can be explained as follows. The systems

with Bose and Boltzmann statistics have the same ground state energy while the system

with Fermi statistics has a notably larger ground state energy. Due to the absence of bound

trimer states for the system with Fermi statistics for vanishing confinement (i.e., for w = 0)

, the pair distribution function is fully determined by the trap length and the tempera-

ture [32, 76, 203]. For the systems with Bose and Boltzmann statistics, the pair distribution

function takes on large values at small r, reflecting the fact that these systems form a droplet

like state for vanishing confinement. An important consequence is that the two-body con-

tacts for the systems with Bose and Boltzmann statistics are, in the low temperature regime,

much larger than the two-body contact for the system with Fermi statistics.

Symbols in Fig. 5.12 show the superfluid fraction ns as a function of the temperature for

the (3, 1) system with interspecies potential VG with r0 = 0.06aho and infinitely large s-wave

scattering length. Circles, crosses, and squares are for Bose, Boltzmann, and Fermi statistics,

respectively. As the temperature decreases, the superfluid fraction increases for the systems

with Boltzmann and Bose statistics and reaches 1 at zero temperature. The superfluid frac-
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tion of the (3, 1) system with Fermi statistics lies below that for the (3, 1) system with Bose

and Boltzmann statics at high temperature. Our calculations go down to kBT = 0.6Eho.

Based on our earlier work [228], we expect that the superfluid fraction for the system with

Fermi statistics will take on negative values as the temperature approaches zero. At high

temperature, the perturbative analysis, introduced earlier for the energy, can be applied to

the superfluid fraction. The “permuted paths” contribute perturbatively to the quantum

moment of inertia and the classical moment of inertia. The combination of the two gives

rise to a correction of the superfluid fraction calculated from the “unpermuted paths”, i.e.,

a correction to the superfluid fraction for the (3, 1) systems with Boltzmann statistics due

to the exchanges of identical particles. At kBT = 2Eho, we find ns = 0.03976(5), 0.04132(1),

and 0.04294(3) for the (3, 1) systems with Fermi, Boltzmann, and Bose statistics, respec-

tively. The differences are 0.00156(6) and 0.00162(4), in agreement with the expectation

based on the perturbative argument. For comparison, dotted, solid, and dashed lines show

the superfluid fraction for the non-interacting (3,1) systems with Bose, Boltzmann and Fermi

statistics, respectively. For the system with Bose statistics, the unitary interactions change

the superfluid fraction only slightly. For the system with Boltzmann statistics, the interac-

tions have a notably larger effect on the superfluid fraction. The non trivial shift comes from

the interplay between the temperature and the interactions.

Finally, we comment that the single-particle model, where the droplet is describled as

a single particle of mass Nma, is not applicable. The superfluid fraction for this model

coincides with the solid line in Fig. 5.12. If |Etrimer| was much larger than Eho, we would

expect that the superfluid fraction for the systems with Bose and Boltzmann statistics would

follow the solid line. The fact that the symbols deviate from the solid line indicates that the

single particle model is not applicable. Interestingly though, the superfluid fracction seems

to only change weakly as Etrimer/Eho changes, suggesting that ns is not a sensitive probe of

the phase transition like feature or absence thereof.
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5.5 Conclusions

This paper considered the finite temperature properties of small s-wave interacting systems

under spherically symmetric harmonic confinement. For two particles in the harmonic trap,

we compared the condensate and superfluid fractions as a function of the temperature. The

role of the particle statistics on these quantities was discussed. For two Boltzmann particles,

the condensate fraction exhibits a strong dependence on the interaction strength while the

superfluid fraction is only weakly dependent on the interaction strength. Changing from

Boltzmann to Bose statistics changes the observables by a relatively small amount while

changing from Boltzmann to Fermi statistics introduces significant quantitative changes.

We further considered N bosons with finite-range two-body Gaussian interactions at

unitarity in the regime where the absolute value of the N -boson droplet energy |Edroplet|

is much larger than the harmonic oscillator energy. We observed a sharp transition as

the temperature increases from a liquid droplet like state to a gas-like state. The energy,

heat capacity, hyperradial distribution function, and superfluid fraction were monitored as

a function of the temperature. A simple model that semi-quantitatively captures the entire

temperature regime was proposed. The model was not only applied to systems with Gaussian

interactions but also to systems with two- and three-body interactions. No evidence for

“intermediate phases” such as a gas consisting of trimers or tetramers was found. Finally, we

considered the (3, 1) system with infinitely large interspecies scattering length. We compared

the pair distribution function for systems with Bose, Boltzmann, and Fermi statistics. We

established that the statistics can be treated perturbatively at high temperature.

In the future, it will be interesting to extend the few-body studies presented here to

larger number of particles. For bosons, this should be fairly straightforward. For fermions,

however, the sign problem will place constraints on the temperature regime that can be

covered. Large weakly-interacting trapped N -boson systems at finite temperature have been

studied using classical field theory and other approaches [245, 246]. These approaches assume

159



that the system is in a gas-like state and capture the shift of the transition temperature from

a thermal gas to a Bose-Einstein condensate with the number of particles. These techniques

are, however, not applicable when the s-wave scattering length becomes infinitely large. In

this regime, beyond mean-field approaches are needed. Earlier work based on the ε- or

1/N - expansion [247, 248], renormalized interactions [249], and the diffusion Monte Carlo

approach [250] treated unitary interactions but were restricted to zero temperature. The

PIMC approach employed here and in Ref. [241] provides, in our view, a powerful means to

study the finite temperature behavior of the strongly correlated N -boson system over a wide

range of system sizes.

An important question is if the N -boson droplet state discussed here can be probed

experimentally. Our calculations excluded non-universal energetically lower lying states,

which could lead to atom losses. Moreover, we assumed that the system is in thermal

equilibrium. In practice, experimental investigations will have to work in a parameter regime

where the equilibration time is faster than the atom loss time. It remains an open question if

quench experiments such as those recently conducted at JILA [251] could, if applied to small

systems, probe the phase transition like feature discussed in this work. A possible scheme

would be to start with a weakly interacting system with known but variable temperature,

to jump the magnetic field to unitarity, and last to probe the system after a variable hold

time.

Our calculations for few-fermion systems showed that a temperature of less than Eho/kB

leads to notable changes in the structural properties. This suggests that the analysis of few-

fermion experiments has to account for finite-temperature effects. A similar conclusion was

reached in Refs. [252, 253], which considered—motivated by the Heidelberg experiments [90–

92]—the temperature dependence of one-dimensional few-fermion systems.
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Ultracold atomic gases are, to a very good approximation, described by pairwise zero-

range interactions. This paper demonstrates that N -body systems with two-body zero-range

interactions can be treated reliably and efficiently by the finite temperature and ground

state path integral Monte Carlo approaches, using the exact two-body propagator for zero-

range interactions in the pair product approximation. Harmonically trapped one- and three-

dimensional systems are considered. A new propagator for the harmonically trapped two-
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body system with infinitely strong zero-range interaction, which may also have applications

in real time evolution schemes, is presented.

6.1 Introduction

Systems with two-body zero-range interactions constitute important models in physics. Al-

though realistic two-body interactions do typically have a finite range, results for systems

with zero-range interactions provide a starting point for understanding complicated few-

and many-body dynamics. In 1934 [254], Fermi used the zero-range model in quantum me-

chanical calculations to explain the scattering of slow neutrons off bound hydrogen atoms.

Nowadays, the two-body contact interaction is discussed in elementary quantum texts [42].

It has, e.g., been used to gain insights into the correlations of molecules, such as H+
2 and H2,

and to model atom-laser interactions [46–48].

In the 60s [31, 255–258], zero-range interactions were used extensively to model strongly-

interacting one-dimensional systems at zero and finite temperature. Many of these models are

relevant to electronic systems where the screening of the long-range Coulomb interactions

leads to effectively short-range interactions [259]. More recently, ultracold atomic gases

interacting through two-body van der Waals potentials have been, in the low temperature

regime, modeled successfully using zero-range interactions [32, 202, 203]. One-, two-, and

three-dimensional systems have been considered.

While zero-range interactions have been at the heart of a great number of discoveries,

including the Efimov effect [41, 211, 260], their incorporation into numerical schemes is not

always straightforward. Loosely speaking, the challenge in using zero-range interactions in

numerical schemes that work with continuous spatial coordinates stems from the fact that

we, in general, do not know how to incorporate the boundary conditions implied by the

zero-range potential into numerical approaches at the four- and higher-body level.

This paper discusses an approach that allows for the use of zero-range potentials in many-
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body simulations. We work in position space and consider a system with fixed number of

particles. We develop a scheme to incorporate pairwise zero-range interactions into e−τH

directly, where H is the system Hamiltonian. The quantity e−τH is of fundamental impor-

tance. If τ is identified with 1/(kBT ), where kB and T denote the Boltzmann constant and

temperature, respectively, then e−τH is the density matrix for the system at finite temper-

ature. Knowing the density matrix, the thermodynamic properties can be calculated. If,

on the other hand, τ is identified with it/~, where t denotes the real time, then e−τH can

be interpreted as the real time propagator and be used to calculate dynamic properties.

Throughout this paper, we refer to τ as imaginary time, keeping in mind that τ carries units

of 1/energy and that τ can be associated with inverse temperature or real time.

The remainder of this paper is organized as follows. Section II reviews the pair product

approximation, which relates the many-body propagator to the two-body propagator. Sec-

tion III derives the two-body propagator for various systems with zero-range interactions.

Sections IV and V demonstrate that the two-body zero-range propagators yield reliable re-

sults if used in one- and three-dimensional path integral Monte Carlo (PIMC) [19, 20, 133]

and path integral ground state (PIGS) [19, 100, 101, 261, 262] simulations of trapped N -

atom systems. The performance and implementation details will be discussed. While the

free-space zero-range propagators have been reported in the literature [113–116], the zero-

range propagators for the harmonically trapped system with infinite coupling constant are,

to the best of our knowledge, new. Finally, Sec. VI concludes.

6.2 N-body density matrix

We consider N particles with mass mj and position vector rj (j = 1, . . . , N) interacting via a

sum of zero-range potentials with interaction strength g. The Hamiltonian H of the system
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can be written as

H =
N∑
j=1

Hsp
j +

N∑
j<k

Vjk, (6.1)

where Hsp
j denotes the non-interacting single-particle Hamiltonian of the jth particle and

Vjk the two-body potential between the jth and kth particle. In the following, it will be

convenient to separate the Hamiltonian Hjk, where Hjk = Hsp
j + Hsp

k + Vjk, of atoms j

and k into relative and center of mass pieces, Hjk = Hrel
jk + Hc.m.

jk , where Hrel
jk depends on

the relative vector rjk, and Hc.m.
jk on the center of mass vector rc.m.

jk , rjk = rj − rk and

rc.m.
jk = (mjrj +mkrk)/(mj +mk). Below, the non-interacting two-particle system will serve

as a reference system and we define H0
jk = Hsp

j +Hsp
k and H0

jk = Hrel,0
jk +Hc.m.

jk .

The N -particle density matrix ρtot(R,R
′; τ) in position space can be written as

ρtot(R,R
′; τ) =

〈
R
∣∣ e−τH ∣∣R′〉 , (6.2)

where R = (r1, . . . , rN) and R′ = (r′1, . . . , r
′
N) collectively denote the coordinates of the

N -particle system. For sufficiently small τ , ρtot(R,R
′; τ) can be constructed using the pair-

product approximation [19],

ρtot(R,R
′; τ) ≈

(
N∏
j=1

ρsp(rj, r
′
j; τ)

)
×(

N∏
j<k

ρ̄rel(rjk, r
′
jk; τ)

)
, (6.3)

where ρ̄rel(rjk, r
′
jk; τ) denotes the normalized pair density matrix,

ρ̄rel(rjk, r
′
jk; τ) =

ρrel(rjk, r
′
jk; τ)

ρrel,0(rjk, r′jk; τ)
, (6.4)

and ρrel(rjk, r
′
jk; τ) and ρrel,0(rjk, r

′
jk; τ) the relative density matrices of the interacting and
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non-interacting two-body systems,

ρrel(rjk, r
′
jk; τ) =

〈
rjk

∣∣∣ e−τHrel
jk

∣∣∣ r′jk〉 (6.5)

and

ρrel,0(rjk, r
′
jk; τ) =

〈
rjk

∣∣∣ e−τHrel,0
jk

∣∣∣ r′jk〉 . (6.6)

In Eq. (6.3), ρsp(rj, r
′
j; τ) denotes the single-particle density matrix,

ρsp(rj, r
′
j; τ) =

〈
rj

∣∣∣ e−τHsp
j

∣∣∣ r′j〉 . (6.7)

The key idea behind Eq. (6.3) is that the one- and two-body density matrices can, often

times, be calculated analytically. Indeed, the non-interacting propagator is known in the

literature both for the free-space and harmonically trapped systems [19, 207]. Moreover,

the eigen energies and eigen states of the Hamiltonian Hrel
jk have, for a class of two-body

interactions, compact expressions, which enables the analytical evaluation of the relative

two-body density matrix in certain cases (see Sec. 6.3).

It should be noted that the pair product approximation is only valid in the small τ limit

since it does not account for three- and higher-body correlations. For the real time dynamics,

this means that the time step is limited by the importance of N -body (N > 2) correlations. If

τ is identified with 1/(kBT ), the pair product approximation is limited to high temperature.

In this case, the pair product approximation is analogous to a virial expansion that includes

the second-order but not the third-order virial coefficient [87].

6.3 Two-body relative density matrix

In the following, we consider one- and three-dimensional systems, without and with external

harmonic confinement, and discuss the evaluation of the relative density matrix for zero-
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range interactions. For notational simplicity, we leave off the subscripts j and k throughout

this section, i.e., we denote the relative distance vector by r for the three-dimensional system

and x for the one-dimensional system, respectively, and the relative part of the two-body

Hamiltonian by Hrel.

6.3.1 One-dimensional system

The complete set of bound and continuum states of Hrel is spanned by ψn with eigen energies

En and ψk with energies ~2k2/(2µ), where µ denotes the reduced two-body mass and k the

relative scattering wave vector. If the ψn and ψk are normalized according to

∫
ψ∗n(x)ψn′(x) dx = δnn′ (6.8)

and ∫
ψ∗k(x)ψk′(x) dx = δ(k − k′), (6.9)

then the relative density matrix ρrel(x, x′; τ) can be written as [207]

ρrel(x, x′; τ) =
∑
n

ψ∗n(x)e−τEnψn(x′) +∫ ∞
0

ψ∗k(x)e−τ~
2k2/(2µ)ψk(x

′) dk. (6.10)

Free-space system: The relative Hamiltonian for the free-space system with zero-range

interaction can be written as

Hrel = − ~2

2µ

∂2

∂x2
+ gδ(x), (6.11)

where g denotes the coupling constant of the δ-function potential. For positive g, the Hamil-

tonian given in Eq. (6.11) does not support a bound state and the corresponding energy
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spectrum is continuous. The symmetric and anti-symmetric scattering states with energy

~2k2/(2µ) read [263]

ψsk(x) =
1√
π

sin (k|x|+ δ(k)) (6.12)

and

ψak(x) =
1√
π

sin(kx), (6.13)

respectively; δ(k) = arctan [~2k/(gµ)] is the phase shift. For negative g, the Hamiltonian

additionally supports a bound state with symmetric wave function

ψs0(x) =

√
µ|g|
~2

e−µ|gx|/~
2

(6.14)

and energy −g2µ/(2~2). Integrating over the symmetric and anti-symmetric scattering

states, and adding, for negative g, the additional bound state, one finds the normalized

relative density matrix ρ̄rel
1D,free [113–116],

ρ̄rel
1D,free(x, x

′; τ) = 1− exp

(
−µ (xx′ + |xx′|)

τ~2

)
×√

πµτ

2

g

~
erfc(u) exp(u2), (6.15)

where u = µ (|x′|+ |x|+ gτ) /
√

2µτ~2 and erfc is the complementary error function. We

emphasize that Eq. (6.15) holds for positive and negative g. The corresponding relative

non-interacting density matrix reads

ρrel,0
1D,free(x, x

′; τ) =
( µ

2πτ~2

)1/2

exp

(
−µ(x− x′)2

2τ~2

)
. (6.16)
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The free-space propagator given in Eq. (6.15) was employed in a PIMC study of the har-

monically trapped spin-polarized two-component Fermi gas with negative g [264].

For large |g|, u approaches
√
µτ/2g/~ and, using limu→∞

√
πu erfc(u) exp(u2) = 1,

Eq. (6.15) reduces to

ρ̄rel
1D,free(x, x

′; τ) =


1− exp

(
−2µxx′

τ~2

)
for xx′ > 0

0 for xx′ ≤ 0.

(6.17)

Equation (6.17) suggests that the relative coordinate does not change sign during the imag-

inary time evolution. Since the interaction strength is infinitely strong, the two particles

fully reflect during any scattering process, i.e., the transmission coefficient is zero. This

means that the initial particle ordering remains unchanged during the time evolution. This

is a direct consequence of the Bose-Fermi duality of one-dimensional systems [31, 265, 266].

Specifically, the phase shift of the symmetric wave function given in Eq. (6.12) goes to zero

when |g| → ∞, implying that the symmetric wave functions coincide, except for an overall

sgn(x) factor, with the anti-symmetric scattering wave functions of non-interacting fermions.

The implications of the Bose-Fermi duality for Monte Carlo simulations of N -body systems

with infinite g is discussed in Sec. 6.4.

Trapped system: For two particles in a harmonic trap, the system Hamiltonian reads

Hrel = − ~2

2µ

∂2

∂x2
+ gδ(x) +

1

2
µω2x2, (6.18)

where ω denotes the angular trapping frequency. The energy spectrum of Hrel is discrete

and the eigen energies and eigen functions are known analytically in compact form [145].

These solutions can be used to evaluate Eq. (6.10) numerically. The corresponding relative
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non-interacting density matrix reads

ρrel,0
1D,trap(x, x′; τ) =

[
2π sinh(τ~ω)a2

ho

]−1/2 ×

exp

(
−(x2 + x′2) cosh(τ~ω)− 2xx′

2 sinh(τ~ω)a2
ho

)
, (6.19)

where aho denotes the harmonic oscillator length, aho =
√

~/(µω). For fixed τ and finite

g, one can then tabulate ρ̄rel
1d,trap(x, x′; τ) for discrete x and x′ using Eq. (6.10) and use a

two-dimensional interpolation during the N -body simulation. The infinite sum in Eq. (6.10)

can be truncated by omitting terms with n > nmax, where nmax is chosen such that the

Boltzmann factor fulfills the inequality e−τEn � e−τE0 . The value of nmax depends on the

time step: smaller τ require larger nmax.

For infinite g, we were able to derive a compact analytical expression for ρ̄rel
1D,trap(x, x′; τ).

As g goes to infinity, the probability distribution of each even state coincides with that of

an odd state, i.e., the system is fermionized. The complete set of even and odd eigen states

for g =∞ can be written as

ψsn(x) = φn(|x|) (6.20)

and

ψan(x) = φn(x), (6.21)

where φn(x) is the non-interacting harmonic oscillator wave function,

φn(x) = (
√
π2nn!aho)−1/2e−x

2/(2a2ho)Hn(x/aho), (6.22)

Hn(x) denotes the Hermite polynomial of order n, and n takes the values 1, 3, 5, 7, . . . . The

170



corresponding energies are En = (n + 1/2)~ω for both the symmetric and anti-symmetric

states, i.e., each energy level is two-fold degenerate. Using Eqs. (6.20) and (6.21) in Eq. (6.10)

and evaluating the infinite sum analytically, we find

ρ̄rel
1D,trap(x, x′; τ) =


1− exp

(
− 2xx′

sinh(τ~ω)a2ho

)
for xx′ > 0

0 for xx′ ≤ 0.

(6.23)

For τ~ω � 1, i.e., when the trap energy scale is much smaller than 1/τ , the trap propagator

[Eq. (6.23)] equals the free-space propagator [Eq. (6.17)].

To test the one-dimensional propagators for infinite g, we consider the Hamiltonian given

in Eq. (6.18) and prepare an initial state using a linearly discretized spatial grid. Our aim is

to determine the ground state wave function and energy by imaginary time propagation. Two

approaches are used. First, the initial state is propagated using the exact trap propagators

[see Eqs. (6.23) and (6.19)]. In this case, the error originates solely from the discretization

of the spatial degree of freedom; indeed, we find that the energy approaches the exact

ground state energy quadratically with decreasing grid spacing δx. Second, the initial state

is propagated using the free-space propagator [see Eqs. (6.17) and (6.16)]. We apply the

Trotter formula [110] and move half of the trap potential to the left and half to the right

of the free-space Hamiltonian. This is known as the primitive approximation [19], which is

expected to yield a quadratic time step error since the trap potential does not commute with

the free-space Hamiltonian. The error is found to scale quadratically with both the time

step and the grid spacing. For τ = (50~ω)−1, δx =
√

2aho/40, and xmax = −xmin = 4
√

2aho,

where xmin ≤ x ≤ xmax, we obtain energies that deviate by 2.4 × 10−5~ω and 2 × 10−12~ω

for the free-space propagator and the trap propagator, respectively, from the exact ground

state energy of 3~ω/2.
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6.3.2 Three-dimensional system

Because the s-wave zero-range potential is spherically symmetric, the relative orbital angular

momentum operator commutes with the relative Hamiltonian. Correspondingly, we label

the bound states ψnlm with eigen energies Enl and the continuum states ψklm with energies

~2k2/(2µ) by the relative orbital angular momentum quantum number l and the projection

quantum number m. If the ψnlm and ψklm are normalized according to

∫
ψ∗nlm(r)ψn′l′m′(r) dr = δnn′δll′δmm′ (6.24)

and ∫
ψ∗klm(r)ψk′l′m′(r) dr = δ(k − k′)δll′δmm′ , (6.25)

the relative density matrix ρrel(r, r′; τ) can be written as [207]

ρrel(r, r′; τ) =
∑
nlm

ψ∗nlm(r)e−τEnlψnlm(r′) +

∑
lm

∫ ∞
0

ψ∗klm(r)e−τ~
2k2/(2µ)ψklm(r′) dk. (6.26)

Free-space system: The Hamiltonian of the three-dimensional system in free space reads

Hrel = − ~2

2µ
∇2

r +
2π~2as
µ

δ(3)(r)
∂

∂r
r, (6.27)

where as is the s-wave scattering length. The second term on the right hand side of Eq. (6.27)

is the regularized two-body zero-range pseudopotential [3]. The l > 0 continuum states read

ψklm(r) = il
√

2

π
kjl(kr)Ylm(r̂), (6.28)
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where the jl and Ylm denote spherical Bessel functions of the first kind and spherical har-

monics, respectively. The continuum states for the s-wave channel read

ψk00(r) =
1√
2πr

sin(kr + δs(k)), (6.29)

where δs(k) = arctan(−ask) is the s-wave phase shift. For positive as, there exists an s-

wave bound state with eigen function ψ000(r) = 1/
√

2πasr2 exp(−r/as) and eigen energy

−~2/(2µa2
s). As is evident from the above eigen states, only the s-wave states are affected

by the interactions. Thus, we construct the relative interacting density matrix ρrel
3D,free by

writing the non-interacting relative density matrix ρrel,0
3D,free and subtracting from it the non-

interacting s-wave contribution and adding to it the s-wave contribution for finite as.

For negative as, there exist only continuum states and the density matrix can be expressed

as

ρrel
3D,free(r, r

′; τ) =ρrel,0
3D,free(r, r

′; τ)+∫ ∞
0

e−
τ~2k2

2µ
1

2π2rr′
[ sin(kr + δs(k)) sin(kr′ + δs(k))−

sin(kr) sin(kr′)] dk, (6.30)

where the non-interacting relative density matrix reads

ρrel,0
3D,free(r, r

′; τ) = (2π~2τ/µ)−3/2e−µ(r−r′)2/(2~2τ). (6.31)

The integral in Eq. (6.30) can be done analytically [267] and the normalized relative density
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matrix reads [115, 116]

ρ̄rel
3D,free(r, r

′; τ) = 1 +
~2τ

µrr′
exp

(
−µrr

′(1 + cos θ)

~2τ

)
×(

1 +
~
as

√
πτ

2µ
erfc(v) exp(v2)

)
, (6.32)

where cos θ = r · r′/(rr′) and v = [r + r′ − τ~2/(µas)]/
√

2τ~2/µ. Adding the bound state

contribution to Eq. (6.30) [see the first term on the right hand side of Eq. (6.26)] for positive

as, one finds Eq. (6.32), i.e., the same propagator as for negative as [116].

For |as| =∞, Eq. (6.32) simplifies to

ρ̄rel
3D,free(r, r

′; τ) = 1 +
~2τ

µrr′
exp

(
−µrr

′(1 + cos θ)

~2τ

)
. (6.33)

This propagator was recently used in a proof-of-principle diffusion Monte Carlo study of the

homogeneous two-component Fermi gas at unitarity with zero-range interactions [268].

Trapped system: The Hamiltonian for two particles in a spherically symmetric harmonic

trap with s-wave scattering length as reads

Hrel = − ~2

2µ
∇2

r +
1

2
µω2r2 +

2π~2as
µ

δ(3)(r)
∂

∂r
r. (6.34)

The non-interacting relative density matrix reads

ρrel,0
3D,trap(r, r′; τ) = a−3

ho [2π sinh(τ~ω)]−3/2 ×

exp

(
−(r2 + r′2) cosh(τ~ω)− 2r · r′

2 sinh(τ~ω)a2
ho

)
. (6.35)

Similar to the free-space case, the relative interacting density matrix is obtained from the

non-interacting density matrix with the difference of the s-wave eigen states and energies

of the interacting and non-interacting systems added. For finite as, we were not able to
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evaluate the infinite sum analytically. Because of the rotational invariance, the infinite sum

depends only on r and r′ (and not the direction of the vectors r and r′), allowing for an

efficient tabulation of the reduced relative density matrix. For infinitely large as, we find

an analytical expression. In this case, the bound state wave functions that are affected by

the δ-function interaction can be written as
√

2φn(r)/
√

4πr2, where the φn(r) are defined in

Eq. (6.22) with x replaced by r and n = 0, 2, 4, . . . The relative two-body density matrix

reads

ρrel
3D,trap(r, r′; τ) = ρrel,0

3D,trap(r, r′; τ) +
∞∑
n=0

e−τ(n+ 1
2

)~ω (−1)n

2πrr′
φ∗n(r)φn(r′), (6.36)

where the even n terms in the sum over n come from the s-wave states that are affected

by the interactions and the odd n terms come from the s-wave states of the non-interacting

system. Performing the infinite sum, we find for the normalized relative density matrix

ρ̄rel
3D,trap(r, r′; τ) = 1+

a2
ho

rr′
sinh(τ~ω) exp

(
− rr

′(1 + cos θ)

a2
ho sinh(τ~ω)

)
. (6.37)

Setting τ~ω = 0, Eq. (6.37) reduces to Eq. (6.33), i.e., to the corresponding free-space

expression.

Equations (6.17) and (6.33) show that the one- and three-dimensional free-space propa-

gators for systems with infinitely large δ-function strength are characterized by the length√
τ~2/µ, which is proportional to the de Broglie wave length. The trap propagators for

infinitely large coupling constant [see Eqs. (6.23) and (6.37)], in contrast, are characterized

additionally by the harmonic oscillator length. For finite interaction strength, the coupling

constant defines a second length scale for the free-space system and a third length scale for

the trapped system.
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6.4 One-dimensional tests

This section incorporates the trapped two-body propagator into PIMC calculations for one-

dimensional N -particle systems with pairwise zero-range interactions. We find that the

conventional PIMC sampling approaches [19, 133] yield an efficient and robust description

of one-dimensional systems with two-body zero-range interactions.

As a first example, we consider N distinguishable harmonically trapped particles with

mass m in one spatial dimension with pairwise zero-range interactions of infinite strength.

The N -particle system with infinitely large interaction strength is unique in that the particle

statistics becomes irrelevant for local observables. For example, the energy is the same for

N identical bosons, N identical fermions and N distinguishable particles at any temperature

provided all particles interact via two-body zero-range interactions. We employ the zero-

range trap propagator together with the single-particle trap propagator. Symbols in Fig.

6.1(a) show the PIMC energy for N distinguishable particles at temperature kBT = ~ω.

Circles and squares are for simulations with imaginary time step τ~ω = 1/8 and 1/128, re-

spectively. For comparison, the dotted line is calculated directly from the partition function

of N non-interacting fermions. Figure 6.1(b) shows the energy difference ∆E between the

simulation and the analytical results. It can be seen that the calculations for the larger

time step (circles in Fig. 6.1) exhibit a systematic time step error, which is found to scale

quadratically with the time step τ for fixed N and to originate from the pair product ap-

proximation. Since we include the two-body correlations exactly, the leading order error

is expected to come from three-body correlations. Indeed, for relatively small fixed τ (τ−1

around 16~ω) and varying N , we find that the error ∆E scales approximately linearly with

the number of triples, suggesting that the error is dominated by three-body correlations with

sub-leading contributions arising from four-body correlations. As the number of particles

N or the time step τ increase, four- and higher-body correlations become more important.

This error analysis suggests that an improved propagator could be obtained if the three-body
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Figure 6.1: PIMC results for N harmonically trapped distinguishable one-dimensional
particles with two-body zero-range interactions of infinite strength at temperature T =
~ω/kB. (a) The symbols show the energy obtained by the PIMC approach as a function
of the number of particles N . For comparison, the dotted line shows the exact thermally
averaged energy. (b) Symbols show the energy difference ∆E between the PIMC energies
and the exact results. As a reference, the dotted line shows the ∆E = 0 curve. In (a) and
(b), the circles and squares are calculated using 8 and 128 time slices, respectively.
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problem could be solved analytically. We note that the performance of the zero-range trap

propagator for the system with infinite g is quite similar to that of the free-space propagator

using the second- or fourth-order Trotter decomposition. The reason is that the error is

dominated by three- and higher-body correlations.

We now discuss that the simulations need to be modified to treat N identical bosons

or fermions with pairwise zero-range interactions of infinite strength. Equations (6.17) and

(6.23) indicate that the paths for any two particles cannot cross. This implies that the

permute move, implemented following the approach discussed in Ref. [261], yields a zero

acceptance probability. This is consistent with our finite g simulations for N identical bosons.

As we change g for otherwise fixed simulation parameters from small positive to large positive

values, the probability of sampling the identity permutation approaches 1. The fact that

particle permutations are always rejected, causes two problems for the infinite g simulations.

First, since the particle ordering does not change, the one-body density for the first particle

differs from that of the second particle, and so on. To calculate the one-body density ρ(x)

of, e.g., the N identical boson system, one can average the one-body density ρj(x) of the

jth particle over all j, ρ(x) = N−1
∑N

j=1 ρj(x). An analogous average can be performed for

other local (closed paths) structural properties. Second, the simulation of open paths, which

allow for the calculation of off-diagonal long-range order, requires that the sampling scheme

be modified since open paths do allow for permutations. The two-particle density matrix

ρ({x1, x2}, {x2, x
′
1}; τ), e.g., is finite if x1 < x2 < x′1. The calculation of non-local observables

is beyond the scope of the present paper.

As a next example, we apply the zero-range trap propagator to N = 2 and 3 identical

bosons in a harmonic trap with g = ~2/(
√

2µaho). For the PIMC calculations, we tabulate

the density matrix for the time step of interest and interpolate during the simulation. For

small number of particles, we expect the zero-range trap propagator to work well even for a

large time step and we use τ~ω = 1/2. For kBT = ~ω/32, we obtain an energy of 1.3067(1)~ω
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and 2.3880(1)~ω for N = 2 and 3, respectively. The temperature is so low that the system

is essentially in the ground state. For comparison, we determined the ground state energy

using the transcendental equation from Ref. [145] and by solving the Lippmann-Schwinger

equation [269]. The resulting ground state energies [1.306746~ω and 2.3880(1)~ω for N = 2

and 3, respectively] agree within error bars with the PIMC results.

To demonstrate that the PIMC simulations describe the short-distance behavior of sys-

tems with zero-range interactions correctly, we analyze the pair distribution function P12(x),

which is normalized to
∫∞
−∞P12(x) dx = 1, for N = 2 and 3 identical bosons with finite g.

To start with, we derive the short-distance properties of the pair distribution function P12

for N identical bosons with zero-range interactions. Using the Hellmann-Feynman theorem,

the partial derivative of the energy with respect to g can be related to the pair distribution

function at x = 0 [64],

P12(0) =
2

N(N − 1)

∂E

∂g
. (6.38)

Note that Eq. (6.38) is the one-dimensional analog of equating the three-dimensional adi-

abatic and pair relations [49]. Second, from the Bethe-Peierls boundary condition of the

N -body wave function Ψ (the derivatives are taken while all other coordinates are kept

fixed),

∂Ψ

∂xjk

∣∣∣∣
xjk→0+

− ∂Ψ

∂xjk

∣∣∣∣
xjk→0−

=
2µg

~2
Ψ

∣∣∣∣
xjk→0

, (6.39)

one can derive that the slope of the pair distribution function at any temperature satisfies

∂

∂x
P12(x)

∣∣
x→0+

− ∂

∂x
P12(x)

∣∣
x→0−

=
4µg

~2
P12(x)

∣∣
x→0

. (6.40)

For identical bosons, ∂P12(x)/∂x
∣∣
x→0+

and ∂P12(x)/∂x
∣∣
x→0−

have the same magnitude but

opposite signs.

The dashed and dotted lines in Fig. 6.2 show P12(x) obtained from our PIMC simulation

for N = 2 and 3, respectively. For comparison, the solid lines are obtained using Eqs. (6.38)
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Figure 6.2: PIMC results for harmonically trapped one-dimensional bosons interacting
through two-body zero-range interactions with coupling constant g = ~2/(

√
2µaho) at tem-

perature T = ~ω/(32kB). The dashed and dotted lines show the pair distribution function
obtained by the PIMC approach for N = 2 and 3 bosons, respectively. For comparison,
the solid lines show the asymptotic short-range behavior obtained by alternative means (see
text).

and (6.40). The values of ∂E/∂g are obtained through independent energy calculations using

the techniques of Refs. [145, 269]. We find P12(0) = 0.3266002/aho and 0.308245(2)/aho

for N = 2 and 3, respectively. Our PIMC results agree well with the solid lines in the

small |x| regime, demonstrating that the PIMC approach describes the short-range behavior

accurately.

6.5 Three-dimensional tests

The pair distribution function of the non-interacting three-dimensional system is, unlike that

of the non-interacting one-dimensional system, zero at vanishing interparticle distance. This

fact leads, as we discuss now, to non-ergodic behavior unless the traditional path integral

sampling methods are complemented by an additional move. To motivate the introduction

of this new “pair distance move”, we consider the two-particle system.

Solid and dashed lines in Fig. 6.3 show the scaled pair distribution functions for two

distinguishable particles with infinitely large s-wave scattering length in a three-dimensional

harmonic trap at kBT/(~ω) = 1 interacting through a zero-range potential and a finite-range
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Figure 6.3: Scaled pair distribution functions 4πP12(r)r2 for two distinguishable particles
of mass m in a harmonic trap at kBT/(~ω) = 1. The solid and dashed lines are for two
particles with infinitely large s-wave scattering length interacting through the zero-range
potential and a Gaussian potential with effective range re ≈ 0.0861aho, respectively. For
comparison, the dotted line is for the non-interacting system.

Gaussian potential with effective range re ≈ 0.0861aho, respectively. The pair distribution

function P12(r) is normalized according to 4π
∫∞

0
P12(r)r2 dr = 1. The pair distribution func-

tions for the finite-range and zero-range potentials nearly coincide for large r, but differ for

small r. The pair distribution function for the Gaussian potential drops to 0 as r approaches

0 while that for the zero-range potential approaches a non-zero value.

PIMC and PIGS simulations typically use the first term on the right hand side of Eq. (6.3)

as the “prior distribution” and the second term as the “correction”. This is suitable for N -

body systems with two-body finite-range potentials for which the scaled pair distribution

function is, as that of the non-interacting system (see the dotted line in Fig. 6.3 for a two-

body example), zero at r = 0. Since the prior distribution has zero probability at r = 0, the

pair distribution function of the system with zero-range interactions is not properly sampled

if standard sampling schemes are used. Ergodicity is violated at r = 0 and the probability

to sample the region near r = 0 is small. Moreover, the correction term [see Eqs. (6.37) and

(6.33)] diverges as r or r′ go to 0. This means that the probability to sample configurations

with r ≈ 0 is small. However, if such a configuration is chosen, there is a small probability to

accept a new configuration with much larger r, i.e., the correlation length is large. Similarly,

if one uses the naive uniform distribution for the prior distribution, i.e., if one proposes a
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move for which all Cartesian coordinates differ by δx from the current configuration, where

δx is a random value between −∆x and ∆x, the problems discussed above still exist.

To remedy the problems that arise if the standard sampling approaches are used, we

introduce a “pair distance move” for which the prior distribution scales as 1/r2 in the pair

distances. First, particles j and k and a bead l are chosen (the coordinates for the lth

bead are collectively denoted by Rl) and the distance rjk = |rjk| and the direction r̂jk are

calculated. A new vector rjk,new that lies along r̂jk or −r̂jk is proposed, rjk,new = εr̂jk. The

quantity ε is written as ε = rjk + δr, where δr is obtained by choosing uniformly from −∆r

to ∆r. If the weight w,

w = min[1,
ρtot(Rl−1,Rl,new; τ)ρtot(Rl+1,Rl,new; τ)ε2

ρtot(Rl−1,Rl; τ)ρtot(Rl+1,Rl; τ)r2
jk

], (6.41)

is larger than a uniform random number between 0 and 1, then the proposed move is accepted.

Otherwise, it is rejected and the old configuration is kept. The value of ∆r is adjusted

such that about 50% of the proposed moves are accepted. It can be easily proven that

detailed balance is fulfilled. Our PIMC calculations for the two-body system with zero-

range interactions show that the “pair distance move” significantly improves the sampling.

Without this move, the short-range behavior of the pair distribution function has a long

correlation length, which increases with decreasing τ . With this move, the small r behavior

is described accurately. The move described here is related to the compression-dilation move

introduced in Ref. [241]. Few details were given in Ref. [241] and no comparison with that

approach is made in this paper.

We now demonstrate that the outlined sampling scheme provides a reliable description

of Bose systems at unitarity, which have attracted a great deal of attention recently exper-

imentally and theoretically [241, 247, 250, 251, 270–273]. While the properties of unitary

Fermi systems with zero-range interactions are fully determined by the s-wave scattering

length [32, 76, 203, 209, 210, 220] those of Bose systems additionally depend on a three-body
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parameter [41, 211]. Specifically, if the two-body interactions are modeled by zero-range po-

tentials, then a three-body regulator is needed to prevent the Thomas collapse of the N -boson

(N ≥ 3) system [41, 43]. Here, we utilize a purely repulsive three-body potential of the form

V3b(Rjkl) =
C6

R6
jkl

, (6.42)

where Rjkl denotes the three-body hyperradius, Rjkl =
√

(rjk + rjl + rkl)/3. In the N -

boson system, each of the N(N − 1)(N − 2)/6 triples feels the regulator, i.e., the term∑
j<k<l V3b(Rjkl) is added to the Hamiltonian with pairwise zero-range interactions. In the

absence of an external trap, the zero temperature three-body ground state energy Etrimer of

the unitary system is set by the C6 coefficient. The corresponding length scale is 1/κ, where

κ =
√
m|Etrimer|/~ is the binding momentum.

Our goal is to determine the ground state properties of self-bound N -boson droplets at

unitarity in the absence of an external confinement. In the context of the present paper, it

would seem that our goal could be readily achieved using the PIGS approach. It turns out,

however, that without a good initial trial wave function, the number of time slices needed

to converge the calculations is rather large, making the simulations computationally quite

expensive. Instead, one might consider performing PIMC calculations at various tempera-

tures and extrapolating to the zero temperature limit. This approach also turns out to be

computationally extensive. Our simulations pursue an alternative approach, in which the

scattering states of the system are discretized in such a way that the relative ground state

energy Ecluster of the N -body cluster is much larger than the energy scale introduced by the

discretization. We utilize a spherically symmetric harmonic trap and adjust the trapping

frequency such that |Ecluster| � ~ω. Simulations are then performed at a temperature where

the Bose droplet is in the ground-state dominated liquid-phase [10, 241], where the finite

temperature introduces center-of-mass excitations but not excitations of the relative degrees

of freedom. The temperature Ttr at which excitations of the relative degrees of freedom be-
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come relevant can be estimated using the “combined model” introduced in Ref. [10]. As we

show now, this approach allows for a fairly robust determination of the N -boson properties

at zero temperature.

We set the trap energy ~ω to 0.27|Etrimer| (Etrimer is the ground state energy of the three-

boson system in free space) and the temperature to ~ω/kB. These parameters provide a

good compromise: First, the temperature is sufficiently low that finite temperature effects

are negligible (i.e., T < Ttr for the N considered below, N = 3 − 9) and high enough

that convergence can be reached with the computational resources available to us. Second,

the size of the N -boson system is smaller than the harmonic oscillator length such that

structural properties such as the pair distribution function are largely unaffected by the

external confinement for N & 5.

Our path integral simulations use the two-body zero-range trap propagator. The repulsive

three-body potentials are treated using the Trotter formula. In the second-order scheme,

half of the sum of the three-body potentials is moved to the left and half to the right of the

Hamiltonian H that accounts for the two-body interactions and the external confinement.

In the fourth-order scheme, a more involved decomposition is used [112, 158]. In addition to

the standard moves and the “pair distance move”, we implement a move that updates the

center-of-mass coordinates. The introduction of this center-of-mass move is motivated by

the fact that the relative degrees of freedom are expected to be, to a good approximation,

“frozen” in the ground state while low-energy center-of-mass excitations are allowed. Indeed,

the center-of-mass energy is given by Ec.m. = 3~ω coth(~ω/(2kBT ))/2, which evaluates to

3.24593~ω for T = ~ω/kB, indicating that center-of-mass excitations cannot be neglected.

The squares in Fig. 6.4 show the pair distribution function calculated by the PIMC

approach for three identical bosons at T = ~ω/kB. For comparison, the solid line and the

circles show zero-temperature results. The solid line is calculated using the PIGS approach

with a trial wave function that coincides with the exact ground state wave function [274]
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Figure 6.4: Scaled pair distribution function 4πP12(r)r2 for three identical harmonically
trapped three-dimensional bosons with two-body zero-range interactions with infinitely large
s-wave scattering length and repulsive 1/R6 three-body potential. The solid line and squares
are calculated by the zero-temperature PIGS approach and the PIMC approach at T =
~ω/kB. For comparison, the circles show the scaled pair distribution function obtained by
sampling the exact ground state density using the Metropolis algorithm.

while the circles are calculated by sampling the exact zero-temperature ground state density

using the Metropolis algorithm. The agreement between the three sets of calculations is very

good, demonstrating (i) that excitations of the relative degrees of freedom are negligible at

the temperature considered and (ii) that the path integral approaches accurately resolve

the short-range behavior of the pair distribution function. The pair distribution functions

shown in Fig. 6.4 are affected by the trap, i.e., they move to larger r as the trap frequency

ω is reduced. The reason is that ~ω is only about four times smaller than |Etrimer|. The

magnitude of the N -boson energy Ecluster increases rapidly with N [1, 7, 9], implying that

the trap effects decrease quickly with increasing N , thus allowing us to extract the free-space

energy Ecluster from the finite-temperature trap energies Esim.

Symbols in Fig. 6.5 exemplarily show our PIMC energies Esim for the five-boson system

at T = ~ω/kB as a function of the time step τ . Circles and squares are obtained using

the second- and fourth-order schemes (see earlier discussion), respectively, to treat the term

exp(−
∑

j<k<l τV3b(Rjkl)). The statistical errors are smaller than the symbol size. The

fourth-order results display, as expected, a smaller time step dependence than the second-

order results and are well described by a function of the form c0 + c2τ
2 + c4τ

4, whereas the
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Figure 6.5: PIMC energies for N = 5 harmonically trapped three-dimensional bosons
with two-body zero-range interactions with infinite scattering length and and repulsive 1/R6

three-body interaction at temperature T = ~ω/kB as a function of the time step τ . The
circles (lower-lying data set) and squares (higher-lying data set) show the energy obtained
using the second- and fourth-order scheme, respectively. The error bands are obtained by
fitting the data for different τ intervals.

second-order results are described by a function of the form c0 + c2τ
2. The presence of the

τ 2 term for the fourth-order results is due to the fact that the pair product approximation

neglects three- and higher-body correlations (see also Sec. 6.4). The shaded regions in

Fig. 6.5 show errorbands obtained by fitting the two sets of PIMC energies for different τ

intervals. The errorbars of the extrapolated zero time step energies are found to overlap.

We find Esim = −37.0(1.2)~ω and −36.2(1.0)~ω for the second- and fourth-order scheme,

respectively. The free-space energy Ecluster is then obtained by subtracting the center-of-mass

energy, Ecluster = Esim − Ec.m..

The squares in Fig. 6.6 show Ecluster for N = 5 − 9. The corresponding energies Esim

are obtained using the fourth-order scheme with τ~ω ≈ 0.000122. As can be seen from

Fig. 6.5, this energy lies within the extrapolated τ = 0 errorbands for N = 5. Figure 6.6

scales the energy Ecluster by the corresponding zero-temperature free-space trimer energy

Etrimer calculated by the hyperspherical coordinate approach. For comparison, the dotted line

shows the N -boson ground state energies from Ref. [7] for a finite-range two-body Gaussian

potential with infinitely large s-wave scattering length and a hardcore three-body regulator.

While the model interactions differ, the agreement between the two sets of calculations is

good, providing further support for the (approximate) universality of N -boson droplets.
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Figure 6.6: Free-space N -boson ground state energy Ecluster as a function of N for infinitely
large two-body s-wave scattering length. The circles with errorbars are extracted from our
PIMC simulations. The dotted line shows the energies reported in Ref. [7].

More detailed comparisons will be presented elsewhere [275].

6.6 Conclusion

This paper discussed how to treat zero-range two-body interactions in N -body Monte Carlo

simulations. We showed that the incorporation of the exact two-body zero-range propaga-

tor via the pair product approximation allows for an accurate description of paradigmatic

strongly-interacting one- and three-dimensional model Hamiltonian.

An important aspect of the studies presented is that the strength of the contact interac-

tion requires no renormalization since the simulations are performed using the regularized

two-body zero-range pseudopotential and continuous spatial coordinates in an unrestricted

Hilbert space. The fact that the interaction strength does not need to be renormalized

distinguishes the simulations presented in this paper from lattice approaches [276–278] and

from configuration interaction approaches [279–281].

The developments presented in this paper open a number of possibilities. The use of two-

body zero-range interactions, e.g., provides direct access to the two-body Tan contact [49],

without extrapolation to the zero-range limit. The two-body Tan contact is defined for

systems with two-body zero-range interactions. It relates distinct physical observables such
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as the large momentum tail and aspects of the radio frequency spectrum, and has attracted a

great deal of theoretical [59, 61, 64, 66, 141, 142, 194] and experimental [52–55, 251] interest.

From the computational perspective, the adiabatic relation, which involves the change of the

energy with the scattering length, and the pair relation [49, 57], which gives the probability

of finding two particles at the same position, are most convenient. Earlier work applied these

relations to systems with finite-range interactions and extrapolated to the zero-range limit.

Using our zero-range propagators, these relations can be used directly for the determination

of the Tan contact, eliminating the extrapolation step.
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Chapter 7
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The low-energy spectrum of N -boson clusters with pairwise zero-range interactions is

believed to be governed by a three-body parameter. We study the ground state of N -boson

clusters with infinite two-body s-wave scattering length by performing ab initio Monte Carlo

simulations. To prevent Thomas collapse, different finite-range three-body regulators are
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used. The energy and structural properties for the three-body Hamiltonian with two-body

zero-range interactions and three-body regulator are in much better agreement with the

“ideal zero-range Efimov theory” results than those for Hamiltonian with two-body finite-

range interactions. For larger clusters we find that the ground state energy and structural

properties of the Hamiltonian with two-body zero-range interactions and finite-range three-

body regulators are not universally determined by the three-body parameter, i.e., depen-

dences on the specific form of the three-body regulator are observed. For comparison, we

consider Hamiltonian with two-body van der Waals interactions and no three-body regulator.

For the interactions considered, the ground state energy of the N -body clusters is—if scaled

by the three-body ground state energy—fairly universal, i.e., the dependence on the short-

range details of the two-body van der Waals potentials is small. Our results are compared

with the literature.

7.1 Introduction

The unitary regime, where the two-body s-wave scattering length is infinitely large, can be

reached in ultra cold dilute atomic gases using Feshbach resonance techniques [4]. Two-

component Fermi gases were realized experimentally and found to be stable and universal

even in the large s-wave scattering length regime [34, 282, 283], i.e., the properties of the

system were found to be governed, to a very good approximation, by the s-wave scattering

length as alone and independent of the details of the interaction potential [32, 76, 203].

Unitary Bose gases, in contrast, are short-lived [251, 270, 271]. Their properties depend

on the details of the interaction potential. Typically, this dependence is encapsulated by a

three-body parameter [41].

Efimov predicted that three identical bosons interacting through two-body potentials

with infinitely large s-wave scattering length as and vanishing effective range support an

infinite number of three-body bound states [211]. The binding momenta κ
(n)
3 of the trimers
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(n labels the states) display a geometric scaling, i.e., κ
(n)
3 /κ

(n+1)
3 ≈ 22.6944 [41, 211]. If

the binding momentum of one trimer is known, that of the other trimers is also known.

Importantly, the binding momenta themselves cannot be determined solely from a theory

that is based on two-body zero-range potentials. Rather, a three-body parameter is needed to

regularize the problem (i.e., to set the absolute scale of the three-body spectrum). The three-

body regulator can be introduced in many ways. In this work, we consider three different

regularization approaches: (i) a Hamiltonian with two-body zero-range potentials and a

zero-range three-body potential, (ii) a Hamiltonian with two-body zero-range potentials and

a purely repulsive three-body potential, and (iii) a Hamiltonian with finite-range two-body

potentials and no three-body potential.

Much less is known about four- and higher-body systems at unitarity [1, 82, 83, 85,

284–288]. N -body cluster states are believed to be attached to each trimer, i.e., for a

trimer with binding momentum κ
(n)
3 , two N -body states are believed to exist with binding

momenta C
(1)
N κ

(n)
3 and C

(2)
N κ

(n)
3 , where C

(1)
N and C

(2)
N are dimensionless parameters that do

not depend on n. Whether four- and higher-body parameters exist has been under debate

in the literature.

The study of N -body states attached to Efimov trimers is challenging for several reasons.

To date, no analytical solutions for N ≥ 4 exist. Numerical treatments have to be capable

of describing vastly different length scales. For finite-range two-body interactions, the lowest

trimer state is typically not a “pure” Efimov state. Thus, one would ideally like to investigate

N -body droplets that are tied to the first- or second-excited trimer states. The corresponding

N -body states (N ≥ 4; see Fig. 7.1 for an illustration of the four-body spectrum as a function

of 1/as) are not bound states but resonance states, which are not stable with respect to break-

up into smaller sub-units. Thus, the numerical approach of choice would ideally be capable

of treating N -body resonance states whose size is many orders of magnitude larger than the

range of the underlying two-body potential.
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Figure 7.1: Schematic illustration of the energy spectrum for four identical bosons. The x
marks the (1/as, E) = (0, 0) point. The dotted line shows the energy of the weakly-bound
dimer. The solid lines show different Efimov trimer states, which become unbound on the
positive scattering length side at the atom-dimer threshold. The dashed lines show “ground
state” and “excited state” tetramers that are attached to each Efimov trimer. These tetramer
states hit the dimer-dimer threshold on the positive scattering length side (the energy of the
two dimers is shown by the dash-dotted line). It should be noted that the excited tetramer
state turns into a virtual state for a certain region of positive scattering lengths [8]; this
detail is not reflected in the plot.

To bypass these numerical challenges, this work pursues, as have other works before [1, 7],

an approach that considers N -body droplets (the thick dashed lines in Fig. 7.1 show the

two four-body states) tied to the energetically lowest-lying trimer state (thick solid line in

Fig. 7.1). To ensure that the trimer ground state has the key characteristics of a true Efimov

trimer state, we employ two-body zero-range interactions together with a purely repulsive

three-body potential that serves as a regulator; we refer to this model as 2bZR+3bRp (2b,

ZR, 3b, and R stand for two-body, zero-range, three-body, and repulsive, respectively, and

p denotes the power of the repulsive three-body potential; see below). The forms of V2b and

V3b for the model 2bZR+3bRp are given in Table 7.1 and the Hamiltonian H for N particles

with mass m and position vector rj reads

H = −
N∑
j=1

~2

2m
∇2
j +

N∑
j<k

V2b(rjk) +
N∑

j<k<l

V3b(Rjkl), (7.1)

where the two-body potential V2b depends on the interparticle distance vector rjk (rjk =

192



Table 7.1: Summary of potential models considered in this work. For each model, the
two-body potential V2b and the three-body potential V3b are listed. V2b for 2bZR+3bZR,
2bZR+3bHC, and 2bZR+3bRp is the Fermi-Huang pseudopotential [3]; as is set to infinity.
VZR(R) for 2bZR+3bZR is treated as a zero-range boundary condition. VHC,R0(R) is the
hardcore repulsive potential; VHC,R0(R) = 0 for R > R0 and VHC,R0(R) =∞ for R < R0. V0

and r0 for 2bG, c12 and c6 for 2bLJ, c10 and c6 for 2b10-6, and c8 and c6 for 2b8-6 are chosen
such that the s-wave scattering length is infinitely large and the two-body system supports
one zero-energy s-wave bound state.

model V2b V3b

2bZR+3bZR 4π~2
m
asδ

(3)(r) ∂
∂r
r VZR(R)

2bZR+3bHC 4π~2
m
asδ

(3)(r) ∂
∂r
r VHC,R0(R)

2bZR+3bRp 4π~2
m
asδ

(3)(r) ∂
∂r
r Cp

Rp

2bG V0 exp[−r2/(2r2
0)] —

2bLJ c12
r12
− c6

r6
—

2b10-6 c10
r10
− c6

r6
—

2b8-6 c8
r8
− c6

r6
—

rj − rk) and the three-body potential V3b depends on the three-body hyperradius Rjkl,

Rjkl =
√

(r2
jk + r2

jl + r2
kl)/3. (7.2)

Importantly, the N -body Hamiltonian H is well behaved, i.e., the ground state is well defined

thanks to the three-body regulator. As we show in Sec. 7.2, the three-body regulator produces

three-body states that share many characteristics with the pure three-body Efimov state.

Pure three-body Efimov states are obtained if the two-body interactions are of zero range

and the hyperradial boundary condition at R123 = 0 is specified [41]. Since the hyperradial

boundary condition or logarithmic derivative can be imposed via a delta-function in the

hyperradius, we refer to this model as 2bZR+3bZR.

Our work considers the N -body ground state using a novel Monte Carlo approach [289]

that allows for the treatment of two-body zero-range interactions. The Monte Carlo ap-

proach can unfortunately not treat three-body zero-range interactions, i.e., it is not capable

of treating the Hamiltonian 2bZR+3bZR. A key objective of the present work is then to in-

vestigate how the properties of N -body droplets in the ground state, supported by the model
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Hamiltonian 2bZR+3bRp, change with the number of particles and with the power p of the

three-body regulator. An important question is to which degree the N -body properties are

determined by the three-body parameter.

For comparison, we also consider Hamiltonian with finite-range two-body Gaussian or

van der Waals interactions and no three-body interaction. The ground state manifolds of

these models, referred to as 2bG, 2bLJ, 2b10-6, and 2b8-6 (see Table 7.1), lack—as we

show—a number of key Efimov characteristics. Two-body Gaussian interactions have been

employed extensively in the literature [1, 10, 78, 287, 290], sometimes also in combination

with a repulsive three-body regulator [7, 291].

Although the structural properties of the ground state trimers for the Hamiltonian

with two-body van der Waals interactions differ notably from those for the pure Efimov

trimer [292, 293], these systems exhibit universal features [77, 78, 294–300]. Specifically,

the trimer ground state binding momentum κ
(1)
3 at unitarity is, to a good approximation,

determined by the van der Waals length LvdW [77, 78] and independent of the short-range

details. For the two-body Lenard-Jones potential, one finds κ
(1)
3 ≈ 0.230/LvdW [301], where

LvdW = (
√
mc6/~)1/2/2. This relationship is nowadays being attributed to van der Waals

universality. Moreover, the binding momentum spacing of 23.4 between the ground state

and the first excited state is quite close to the spacing of 22.6944 exhibited by consective

pure Efimov trimers [301]. It is thus interesting to investigate if van der Waals universality

exists for N > 3, i.e., to answer the question whether or not the N -body ground state energy

depends on the short-range details of the two-body van der Waals potential.

The remainder of this paper is organized as follows. Section 7.2 compares the properties

of the three-boson system with infinitely large s-wave scattering length interacting through

2bZR+3bZR, 2bZR+3bHC, and 2bZR+3bRp and illustrates the benefits and limitations of

these models. Section 7.3 reviews several literature results for N -body droplets. Section 7.4

extends the calculations for the 2bZR+3bRp interaction model to clusters with N ≤ 15.
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In addition to the energy, various structural properties are discussed in detail. Section 7.5

compares the results for the model 2bZR+3bRp with those for systems with two-body finite-

range interactions (i.e., for the models 2bG, 2bLJ, 2b10-6, and 2b8-6). Finally, Sec. 7.6

concludes.

7.2 Three-body system at unitarity

To understand the three-body system, it is instructive to rewrite the Hamiltonian H,

Eq. (7.1), for N = 3 in hyperspherical coordinates [75]. To this end, we first separate

off the center of mass degrees of freedom and restrict ourselves to states with vanishing

relative orbital angular momentum. For the 2bZR+3bZR, 2bZR+3bHC, and 2bZR+3bRp

models with infinitely large two-body s-wave scattering length as, the hyperradial and hy-

perangular degrees of freedom separate [41, 221]. The lowest eigen value of the hyperangular

Schrödinger equation is typically denoted by s0, where s0 ≈ 1.006ı [41, 211]. This eigen

value enters into the hyperradial Schrödinger equation with hyperradial Hamiltonian HR,

HR = − ~2

2m

∂2

∂R2
+

~2(s2
0 − 1/4)

2mR2
+ V3b(R) (7.3)

(for notational simplicity, the three-body hyperradius is denoted by R throughout this sec-

tion). If V3b(R) is equal to zero, the eigen energies of the Hamiltonian HR are not well

defined. To make the problem well-defined without explicitly introducing a length scale,

a boundary condition at R = 0, which serves as a regulator and defines a scale, can be

specified. This is the model 2bZR+3bZR. The energy spectrum of the 2bZR+3bZR model

Hamiltonian displays a perfect geometric series [41]. For an eigen state with binding momen-

tum κ
(n)
3 [the corresponding energy is (~κ(n)

3 )2/m], there exists a tighter and a looser bound

state with binding momentum κ
(n−1)
3 = exp(π/|s0|)κ(n)

3 and κ
(n+1)
3 = exp(−π/|s0|)κ(n)

3 , re-

spectively. Here, exp(π/|s0|) is approximately equal to 22.6944. The three-body spectrum
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Figure 7.2: Breaking of the scale invariance for the three-boson system at unitarity with
three-body hardcore regulator. The circles show the difference between the binding momen-
tum ratio κ

(n)
3 /κ

(n+1)
3 of the nth and (n + 1)th states for the model 2bZR+3bHC and the

ratio exp(π/|s0|) = 22.6944 for the model 2bZR+3bZR as a function of n. The solid line
shows a fit to the data points. The breaking of the scale invariance becomes weaker with
increasing n.

for the 2bZR+3bZR model is not bounded from below; in our notation, this means that n

can take non-positive values, i.e., n = . . . ,−2,−1, 0, 1, 2, . . . There exists an infinity of three-

body bound states and each hyperradial wavefunction ψn(R) has infinitely many nodes. The

hyperradial wavefunctions of these states collapse if scaled by the binding momentum κ
(n)
3 ,

i.e., (κ
(n)
3 )1/2ψn(κ

(n)
3 R) is the same for all states.

We now consider finite-range three-body regulators. As a first toy model, we consider

a hardcore repulsive three-body potential, i.e., we consider the model 2bZR+3bHC (see

Table 7.1). In this case, the hyperangular and hyperradial parts separate as before and the

Hamiltonian HR supports a well defined ground state with energy E
(1)
3 or binding momentum

κ
(1)
3 (in our notation, n = 1, 2, . . . ). For the nth state with binding momentum κ

(n)
3 , the

hyperradial wavefunction has n−1 nodes. The circles in Fig. 7.2 show the difference between

the binding momentum ratios for the model 2bZR+3bHC and the model 2bZR+3bZR. The

binding momentum ratio for the ground and first excited states of the model 2bZR+3bHC

is approximately 22.7064. The deviation from the model 2bZR+3bZR is 0.0120 or 0.053%.

As we go to excited states, the deviations decrease exponentially. A log-linear fit of the

deviations yields κ
(n)
3 /κ

(n+1)
3 −exp(π/|s0|) ≈ exp(1.823−6.244n) (see the solid line in Fig. 7.2).

The overlap between the wavefunction of the ground state of the model 2bZR+3bHC and
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Figure 7.3: Binding momentum characteristics for the three-boson system with three-body
power law regulator at unitarity. The circles show the ratio of the binding momentum of
two consecutive states for the model 2bZR+3bRp as a function of p. Panel (a) shows the
binding momentum ratio for the ground and the first excited states while panel (b) shows
the ratio for the first and the second excited states. The solid and dashed lines show the
binding momentum ratio for the models 2bZR+3bZR and 2bZR+3bHC, respectively.

the wavefunction of the model 2bZR+3bZR with the same binding momentum is 0.99947,

i.e., the inner region where the wavefunction for the model 2bZR+3bHC deviates from the

true Efimov wavefunction is insignificant. The three-body hardcore potential breaks the

scale-invariance and introduces n-dependent energy spacings.

The discontinuity of the derivative of the wavefunction at R = R0 makes the three-body

hardcore regulator challenging to treat numerically, at least by the path integral Monte Carlo

(PIMC) technique employed in Sec. 7.4. Thus, we consider three-body power law potentials,

which approach the hardcore potential for p→∞. The circles in Fig. 7.3 show the binding

momentum ratios for the model 2bZR+3bRp as a function of p. Figures 3(a) and 3(b) show

the binding momentum ratios for the ground and first excited states, and the first and second

excited states, respectively. As expected, the binding momentum ratios approach the value

for the model 2bZR+3bHC (dashed lines) in the large p limit. For comparison, the solid

lines show the binding momentum ratio for the model 2bZR+3bZR. The deviations between
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the binding momentum ratios for the 2bZR+3bRp and the 2bZR+3bHC models are largest

for p = 4. Similar to the model 2bZR+3bHC, the binding momentum ratios for the model

2bZR+3bRp approach the value exp(π/|s0|) exponentially with increasing n.

The spacing of the momenta is not the only way to characterize how universal the system

is, i.e., how close a given system is to the true Efimov scenario described by the model

2bZR+3bZR. The structural properties provide additional insights. Indeed, the structures

of weakly-bound three-body systems with positive as have recently been measured [292, 293].

We first look at the distribution of the angles θjkl between each pair of position vectors, θjkl =

arccos(r̂jk · r̂kl). The distribution Ptot(θ) considers all three angles of each triangle, while

the distribution Pmin(θ) [Pmax(θ)] considers only the smallest [largest] of the three angles of

each triangle. The normalizations are chosen such that
∫ π

0
Ptot(θ)dθ = 3 and

∫ π
0
Pmin(θ)dθ =∫ π

0
Pmax(θ)dθ = 1. For infinitely large as (as considered throughout this section), these

angular distributions only depend on the hyperangles and not on the hyperradius. Thus,

they are the same for the models 2bZR+3bZR, 2bZR+3bHC, and 2bZR+3bRp. The circles,

triangles, and squares in Fig. 7.4 show Ptot(θ), Pmin(θ), and Pmax(θ), respectively, for these

models. Ptot(θ) is approximately linear and approaches a finite value for θ → 0. We are

interested in the angular distributions for two reasons. (i) For the models 2bG, 2bLJ, 2b10-

6, and 2b8-6, the hyperangular and hyperradial degrees of freedom do not separate and

the difference between their angular distributions and those for the two-body zero-range

models provides valuable insights (see Ref. [301]). (ii) For the N -body clusters, the angular

distributions, which depend on both the hyperangles and the N -particle hyperradius, can

serve to monitor the three-body correlations.

Solid, dotted, and dashed lines in Fig. 7.4 show the angular distributions Ptot(θ), Pmin(θ),

and Pmax(θ), respectively, of the three-body ground state for the model 2bG. Compared to

that for the two-body zero-range models, the angular distribution near θ = 0 for the finite-

range model displays distinctly different behavior. For the Gaussian model, the probability
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Figure 7.4: Angular distributions for three identical bosons at unitarity. The circles,
triangles and squares show the angular distributions Ptot(θ), Pmin(θ), and Pmax(θ) for the
model 2bZR; these distributions are identical to those for the models 2bZR+3bHC and
2bZR+3bRp. The solid, dotted, and dashed lines show the angular distributions Ptot(θ),
Pmin(θ), and Pmax(θ) for the model 2bG.

of finding an angle of zero is zero and the angular distribution peaks at around 0.17π or 31◦.

For the zero-range model, the angular distribution peaks at 0 and Ptot(0) is finite. This is

because the zero-range boundary condition makes the probability to find two particles at the

same position finite. A vanishing interparticle distance corresponds to a triangle in which one

of the three angles θjkl is zero. Since the angular distributions for the models 2bZR+3bZR

and 2bG show distinctly different features, one might expect that the binding momentum

ratios κ(1)/κ(2) for these two models also differ. The value of κ
(1)
3 /κ

(2)
3 for the model 2bG

is 22.983, which differs by only 1.27% from that for the model 2bZR+3bZR. This indicates

that it is insufficient to only evaluate the binding momentum ratios to judge how universal

the system is. We note that the distribution P (θ) for the ground state of the N = 3 system

with two-body Lenard-Jones interactions is quite similar to that for the ground state of the

N = 3 system with two-body Gaussian interactions [301].

We now consider the radial density ρ(r) (r is measured relative to the center of mass of

the three-body system) for the models 2bZR+3bZR and 2bZR+3bRp with p = 6. The radial

density ρ(r) is normalized such that 4π
∫∞

0
ρ(r)r2dr = N and depends on the hyperradius

and the hyperangles. The dashed and solid lines in Fig. 7.5 show the radial density ρ(r)

for the models 2bZR+3bZR and 2bZR+3bRp with p = 6, respectively. For the latter, the
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Figure 7.5: Radial density ρ(r) for three identical bosons at unitarity (r is measured relative
to the center of mass of the three-body system). The dashed and solid lines show ρ(r) for
the models 2bZR+3bZR and 2bZR+3bRp with p = 6, respectively.

ground state density is shown. The radial densities are scaled by their respective binding

momentum κ3. The solid and dashed lines agree well in the large r region and differ notably

in the small r region. The deviation in the small r region comes from the fact that the

hyperradial density for the model 2bZR+3bZR decays much slower for small R than that

for the model 2bZR+3bRp. Note that even though the radial densities for the two models

differ by about a factor of two in the small r region, the difference between the integrated

contributions is small because the volume element contains an r2 factor.

7.3 N-body clusters at unitarity: Overview of litera-

ture results

This section discusses various literature results for the energy of weakly-bound N -body

droplets (N > 3) at unitarity. The diamonds in Fig. 7.6(a) show the N -boson energy per

particle EN/N for the model 2bG as a function of N [1, 10, 290]. The energy per particle

increases approximately linearly with N for N > 6 (for smaller N , some deviations from the

linear behavior exist). Based on the fact that the energy per particle, and correspondingly the

binding momentum, scale linearly with N for the model 2bG, Gattobigio et al. [1] proposed

an analytical form for the N -boson system with two-body zero-range interactions and fixed
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Figure 7.6: Energy per particle of N -boson clusters at unitarity. (a) Summary of literature
results. The dashed and dotted lines show the analytical prediction by Gattobigio and
Kievsky [1] and Nicholson [9], respectively. The triangles show the diffusion Monte Carlo
(DMC) energies for a Hamiltonian with two-body square well interaction and repulsive three-
body hardcore regulator [7]. The diamonds show the energy for the model 2bG [10]. (b)
Summary of our PIMC calculations. The circles and pluses are for the model 2bZR+3bRp
with p = 4 and 8, respectively; the error bars (not shown) are of the order of the symbol
sizes. The squares, diamonds, and triangles are for the model 2bZR+3bRp with p = 5, 6, and
7, respectively; the error bars (not shown) are smaller than the symbol sizes. (c) Summary
of our calculations for two-body van der Waals models. The circles, crosses, and squares
show our DMC results for the models 2bLJ, 2b10-6, and 2b8-6, respectively.
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three-body parameter,

κN
κ3

= 1 +

(
κ4

κ3

− 1

)
(N − 3) (7.4)

[see the dashed line in Fig. 7.6(a)]. The ratio κ4/κ3 is not taken from the ground state

calculations for the Gaussian two-body interaction model, for which κ4/κ3 =
√

5.86, but

from Deltuva’s calculations for highly excited four-body resonance states. Deltuva finds the

universal ratio κ4/κ3 =
√

4.61 [285]. Gattobigio et al.’s expression, converted to the energy,

exhibits a leading order N2 and sub-leading order N dependence.

It should be noted that the ground state energy of the Hamiltonian with pairwise Gaus-

sian interactions scales differently with N for N & 10 than that of Hamiltonian with pair-

wise interactions with short-range repulsion. For interactions with repulsive core, it is well-

established that the energy per particle increases weaker than linear for N & 10 (see, e.g.,

the literature on helium and tritium droplets [302, 303]). Gattobigio et al. [290] noted that

Eq. (7.4) applies not only to systems with zero-range interactions but also to systems with

finite-range interactions in the regime where E/N is approximately proportional to N (e.g.,

to helium droplets with N . 10). In this case, the ratio κ4/κ3 for the finite-range potential

is taken as input and the binding momentum for N > 4 is predicted. We return to this

discussion in Sec. 7.5.

Independent evidence for the leading-order N dependence of the energy per particle

for the Hamiltonian with two-body zero-range interactions comes from lattice calculations

for even N [9]. Assuming that the distribution of the two-body correlator is exactly log

normal, Nicholson deduced an analytical expression for the energy per particle, EN/N =

(N/2 − 1)E4/4 [see the dotted line in Fig. 7.6(a)] [9]. To plot this expression, we used

Deltuva’s value of E4/E3 = 4.61. It should be noted that the coefficients predicted by

Gattobigio et al. and Nicholson for the leading order N dependence differ by about a factor

of 2.
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A somewhat different N -dependence of the energy per particle was observed in the nu-

merical calculations by von Stecher [see triangles in Fig. 7.6(a)] [7]. In fact, the idea to use

a three-body regulator, as in our model 2bZR+3bRp, to make the ground state trimer large

and Efimov-like was introduced in Ref. [7]. Von Stecher employed a model Hamiltonian with

two-body square well potential with infinitely large two-body s-wave scattering length and

three-body hardcore potential. For N . 10, the energy per particle increases approximately

linearly with increasing N . For larger N , the triangles in Fig. 7.6(a) flatten. Reference [241]

interpreted this as a turnover to a N0 dependence of the energy per particle. Such a behavior

suggests a saturation of the density for large N . This saturation would be a consequence of

the balance of the two-body attractive and three-body repulsive interactions.

The discussion above shows that the dependence of the energies tied to Efimov trimers is

not well understood. Specifically, neither the functional form of the energy per particle nor

the coefficients are agreed upon. In the following sections, we attempt to understand where

the discrepancies of the literature results come from.

7.4 N-body results at unitarity for the model 2bZR+

3bRp

To calculate theN -boson energy for the Hamiltonian with interaction model 2bZR+3bRp, we

apply the PIMC technique [19, 289]. The PIMC technique is an, in principle, exact finite-

temperature method; the errors, which originate from the discretization of the imaginary

time and the stochastic evaluation of integrals, can be reduced systematically. To obtain the

ground state energy of the N -boson Hamiltonian, the PIMC approach has to be extended

to the zero-temperature limit. Typically, this is achieved by the path integral ground state

approach [19, 100]. Here, we pursue an alternative strategy. Namely, we work in the finite

temperature regime where the thermal contribution to the energy is known and where the
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Table 7.2: PIMC energies for the model 2bZR+3bRp for N = 4−15. Columns 2-4 show the
scaled energy EN/N/(E3/3) for p = 5, 6, and 7, respectively. The error bars (not explicitly
reported) are around 3%.

N 2bZR+3bR5 2bZR+3bR6 2bZR+3bR7
4 3.46 3.64 3.73
5 6.19 6.53 6.70
6 8.69 9.42 9.81
7 10.9 12.0 12.6
8 12.8 14.3 15.1
9 14.5 16.4 17.5
10 15.9 18.3 19.7
11 17.3 20.0 21.5
12 18.4 21.5 23.3
13 19.4 22.8 25.0
14 20.3 24.2 26.4
15 21.1 25.2 27.8

structural properties of interest are not affected by the temperature. This approach was

introduced and benchmarked in Ref. [10]. The basic idea is to place the droplet in a weak

external harmonic confinement, whose angular frequency ω is chosen such that the center

of mass energy spectrum becomes discretized and the relative motion is unaffected by the

trap. This requirement corresponds to |EN | � ~ω. Since the density of states of the

harmonically trapped center of mass pseudoparticle is known analytically, the ground state

energy EN of the N -boson droplet in free space can be extracted from the finite-temperature

energy [10, 289].

The circles, squares, diamonds, triangles, and pluses in Fig. 7.6(b) show the energy per

particle for the model 2bZR+3bRp with p = 4, 5, 6, 7, and 8, respectively, as a function of

N (see also Table 7.2 and the Supplemental Material [304]). For each p, the energy per

particle is scaled by the respective trimer energy per particle. For a fixed p, the energy per

particle increases monotonically and smoothly as a function of N , i.e, even-odd effects, which

have been observed in trapped and homogeneous two-component Fermi gases [209, 305, 306],

are—if existent—smaller than our statistical error bars. For fixed N , the scaled energy per
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Figure 7.7: Comparison of our PIMC energies (left) and literature results (right) for selected
N . Panels (a), (b), and (c) show our PIMC energy per particle for N -boson clusters inter-
acting through the model 2bZR+3bRp as a function of p for N = 6, 10, and 13, respectively.
For comparison, panels (d), (e), and (f) show the energy per particle from the literature for
the same N . The triangles, diamonds, and squares are from von Stecher [7], Nicholson [9],
and Gattobigio et al. [1]. Since the work by Nicholson is restricted to even N , comparison
for N = 13 cannot be made.

particle increases with increasing p (p ≥ 4); this increase becomes smaller with increasing p.

Similarly to von Stecher’s energy per particle [7] [triangles in Fig. 7.6(a)], the scaled energy

per particle increases roughly linearly for smallish N and then flattens out for larger N . This

effect is most pronounced for p = 4 and 5, where the flattening sets in around N = 8− 10,

and least pronounced for p = 8. The reason for the flattening is that the clusters develop,

for sufficiently large N , more than one pair distance scale (see below for more details).

The circles in Fig. 7.7 replot the PIMC energy per particle for selected N . As the power

p increases, the scaled energy approaches a constant. Based on our discussion in Sec. 7.2,

the p → ∞ energy should coincide with the energy for the model 2bZR+3bHC. It is thus

instructive to compare our scaled energies, extrapolated by eye to the p → ∞ limit, with

those obtained by von Stecher [7], who employed a two-body square well potential and a

three-body hardcore regulator [see triangles in Figs. 7.7(d)-7.7(f)]. We find that our p→∞

energy per particle lies above von Stecher’s energy per particle by something like 10− 20%,
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20 − 30%, and 30 − 50% for N = 6, 10, and 13, respectively. Since the three-body sectors

are treated on consistent footing (3bRp→3bHC as p→∞), we speculate that the difference

arises from the different two-body interactions. However, we did not perform calculations

to confirm this and can thus not rule out other reasons. As can be seen from Fig. 7.7,

Nicholson’s energy prediction lies notably below our large p energies while Gattobigio et

al.’s prediction lies above our large p energies for N & 8.

If the N -body energies were determined solely by a three-body parameter κ3, the model

2bZR+3bRp for different p would yield the same scaled energies, i.e., the symbols in

Fig. 7.6(b) would collapse to a single curve. The fact that they do not collapse indicates

that the three-body parameter is not sufficient to predict the energy of the N -boson clusters,

at least not for the models considered. To gain more insight into this, it is instructive to

analyze the length scales of the model 2bZR+3bRp. Four length scales can be identified (see

rows 3–6 of Table 7.3). (i) The characteristic length scale Lp of the three-body repulsive

potential. (ii) The length scale L̄3 defined by the three-body binding energy. (iii) The length

scale L̄N defined by the energy of the cluster. And, (iv) the length scale l̄N associated with

the energy per particle of the cluster. Inspection of the definitions given in Table 7.3 shows

that L̄N and l̄N are not independent.

For p = 4–8, we find L̄3/Lp ≈ 29.3, 28.8, 27.6, 26.6, and 25.9, i.e., the trimer is significantly

larger than the scale of the underlying repulsive three-body potential. This ensures, as

discussed in Sec. 7.2, that the trimer ground state described by the model 2bZR+3bRp with

p ≥ 4 exhibits the key characteristics of an Efimov state. It is instructive to alternatively

think about the trimer size in terms of the average interparticle spacing r̄. For trimers with

p = 4–8, we find r̄/Lp ≈ 18.7, 18.5, 17.7, 17.1, and 16.6.

For p = 6, we find that L̄N/Lp changes from 11.2 for N = 4 to 8.37 for N = 5 to 2.46 for

N = 15. This suggests that the N -boson droplet “sees” increasingly more of the three-body

regulator as N increases, i.e., that the dependence of EN/N on p increases with increasing

206



T
ab

le
7.

3:
S
u
m

m
ar

y
of

th
e

d
efi

n
it

io
n
s

of
le

n
gt

h
sc

al
es

.
T

h
e

va
n

d
er

W
aa

ls
le

n
gt

h
L

v
d

W
is

d
efi

n
ed

in
R

ef
.

[4
].
L
p

fo
r
p

=
6

ag
re

es
w

it
h
L

v
d

W
if
m

is
re

p
la

ce
d

b
y

th
e

re
d
u
ce

d
tw

o-
b

o
d
y

m
as

s
m
/2

.

le
n
gt

h
sc

al
e

d
efi

n
it

io
n

d
es

cr
ip

ti
on

L
g

r 0
ch

ar
ac

te
ri

st
ic

le
n
gt

h
sc

al
e

of
th

e
tw

o-
b

o
d
y

G
au

ss
ia

n
p

ot
en

ti
al

L
v
d

W
(√
m
c 6
/~

)1
/
2
/2

ch
ar

ac
te

ri
st

ic
le

n
gt

h
sc

al
e

of
th

e
tw

o-
b

o
d
y

va
n

d
er

W
aa

ls
p

ot
en

ti
al

L
p

[1
/(
p
−

2)
√ 2m

C
p
/~

]2
/
(p
−

2
)

ch
ar

ac
te

ri
st

ic
le

n
gt

h
sc

al
e

of
th

e
th

re
e-

b
o
d
y

re
p
u
ls

iv
e

p
ot

en
ti

al

L̄
3

1/
κ

3
=

~/
√ m|

E
3
|

le
n
gt

h
sc

al
e

se
t

b
y

th
e

th
re

e-
b

o
d
y

b
in

d
in

g
en

er
gy

L̄
N

1/
κ
N

=
~/
√ m|

E
N
|

le
n
gt

h
sc

al
e

se
t

b
y

th
e
N

-b
o
d
y

b
in

d
in

g
en

er
gy

l̄ N
~/
√ m|

E
N
|/
N

=
√
N
L̄
N

le
n
gt

h
sc

al
e

se
t

b
y

th
e
N

-b
o
d
y

b
in

d
in

g
en

er
gy

p
er

p
ar

ti
cl

e
r̄

av
er

ag
e

in
te

rp
ar

ti
cl

e
sp

ac
in

g
R̄

av
er

ag
e

su
b
-t

h
re

e-
b

o
d
y

h
y
p

er
ra

d
iu

s

207



0

10

20

r_
 /

 L
6

0

1

2

r_
 /

 L
g

0

0.4

0.8

κ
3
 r_

2 4 6 8 10 12 14 16
N

0

0.4

0.8

κ
3
 r_

0

0.4

0.8

κ
3
 r_

0

2

4

 r_
 /

 L
v

d
W

(a)

(b)

(c)

Figure 7.8: Expectation value r̄ of the pair distance as a function of N for N -boson systems
interacting through various models. (a) The squares are for the model 2bZR+3bRp with
p = 6. (b) The triangles are for the model 2bG. (c) The circles are for the model 2bLJ.
The error bars show the variance of the pair distance. The pair distances are plotted using
two different units: (i) the inverse three-body binding momentum (left axis) and (ii) the
characteristic length scale of the model Hamiltonian (right axis).

N . The length scale l̄N , in contrast, suggests a larger separation of scales; for N = 13, e.g.,

we have l̄N/Lp = 7.69 for p = 4 and l̄N/Lp = 6.85 for p = 8. In fact, if EN/N scales as N ,

then L̄N and l̄N scale as 1/N and 1/
√
N , respectively. If EN/N scales as N0, then L̄N and

l̄N scale as 1/
√
N and N0, respectively. This implies that—unless the energy scales linearly

(or even weaker) with N for large N—the properties of the N -boson droplets are expected

to be notably affected by the choice of the three-body regulator.

Alternatively, one can consider the average interparticle distance r̄ and the average sub-

three-body hyperradius R̄. The squares in Fig. 7.8(a) show the average interparticle spacing

r̄, i.e., the expectation value of the pair distance, as a function of N in units of 1/κ3 (left
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Figure 7.9: (a) Expectation value R̄ of the sub-three-body hyperradius (triple size) as a
function of N for N -boson systems interacting through the model 2bZR+3bR6. The error
bars show the variance of the triple size. (b) Triple distribution function Ptriple(R) for the
N = 13 cluster scaled using the three-body binding momentum κ3. The solid lines from top
to bottom at κ3R = 0.6 are for the model 2bZR+3bRp with p = 4, 5, 6, 7, and 8. The inset
replots the triple distribution functions using the binding momentum κ13 of the N = 13
droplet. In these units, the triple distribution functions for different p collapse.

axis) and in units of L6 (right axis) for the model 2bZR+3bRp with p = 6. The error bars

indicate the variance ∆r of the pair distance, ∆r =
√
〈r2〉 − 〈r〉2, where 〈〉 indicates the

quantum mechanical expectation value [307]. As the number of particles N increases, both

the mean and variance of the pair distance are nearly constant. The mean and variance of

the pair distance are about one order of magnitude larger than the internal length scale Lp.

The relatively large variance of the Hamiltonian with model interaction 2bZR+3bRp implies

that the clusters are diffuse and liquid-like. The squares in Fig. 7.9(a) show the average

sub-three-body hyperradius R̄, i.e., the expectation value of the triple size, as a function of

N for the model 2bZR+3bRp with p = 6. The error bars indicate the variance. The mean

and variance of the sub-three-body hyperradius behave similar to the mean and variance of
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Figure 7.10: (a) Maximum density ρmax as a function of N for N -boson systems interacting
through various models. The circles, squares, and diamonds are for the model 2bZR+3bRp
with p = 5 (lowest data set), 6, and 7 (highest data set), respectively. For comparison, the
line is for the model 2bG. (b) Same data as in (a) but replotted as the minimum average
interparticle distance (ρmax)−1/3. The right axis shows the data for the model 2bZR+3bR6
in units of L6.

the pair distance.

The average pair distance and sub-three-body hyperradius are obtained by averaging over

all possible pairs and triples regardless of whether or not the particles are close to each other.

To get more “local” information, we calculate the maximum density and subsequently the

closest pair distance. The circles, squares, and diamonds in Fig. 7.10(a) show the maximum

ρmax of the radial density for the model 2bZR+3bRp with p = 5, 6, and 7, respectively, as

a function of N . We find that unlike for N = 3 (see Fig. 7.5), the radial density peaks at

r = 0 for N ≥ 4. For all p, the maximum of the radial density is roughly a constant for the

largest N considered. This constant depends—as the energy per particle—on the three-body

regulator. The circles, squares, and diamonds in Fig. 7.10(b) show the smallest average pair

distance for the model 2bZR+3bRp with p = 5, 6, and 7, respectively, as a function of N .

The smallest average pair distance decreases with increasing N and approximately saturates

for the largest N considered. The smallest average pair distance is only about five times
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Figure 7.11: Scaled pair distribution function 4πr2Ppair(r) for N = 13 bosons interacting
through various models. (a) The solid lines from top to bottom at κ3r = 0.8 are for the
model 2bZR+3bRp with p = 4–8, scaled using the three-body binding momentum κ3. The
inset replots the pair distribution functions scaled using the binding momentum κ13 of the
N = 13 droplet. In these units, the pair distribution functions for different p collapse. (b)
The dashed and dotted lines show the scaled distribution functions for the models 2bLJ and
2bG, respectively, using the three-body binding momentum κ3.

larger than the characteristic length scale Lp of the three-body regulator.

The above length scale discussion can be expanded by considering distribution functions.

The scaled pair distribution function 4πr2Ppair(r), normalized according to 4π
∫∞

0
r2Ppair(r)dr

= 1, tells one the probability to find two particles at a distance r from each other. The lines

from top to bottom at κ3r = 0.8 in Fig. 7.11(a) show the scaled pair distribution function

4πr2Ppair(r) for N = 13 interacting through 2bZR+3bRp with p = 4–8. The amplitude at

r = 0 is finite and roughly independent of p. This makes sense as it is a signature of the

two-body zero-range interactions, which enforce a finite amplitude at r = 0.

The triple distribution function Ptriple(R), normalized according to
∫∞

0
Ptriple(R)dR = 1,

tells one the probability to find three particles with sub-three-body hyperradius R. The solid

lines from top to bottom at κ3R = 0.6 in Fig. 7.9(b) show the triple distribution function
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Ptriple(R) for N = 13 interacting through 2bZR+3bRp with p = 4–8. The triple distribution

functions are broad and structureless, indicating that the clusters are diffuse and liquid-like

and that no small three-body sub-systems are formed.

Figures 7.9(b) and 7.11(a) show that the distribution functions Ppair(r) and Ptriple(R) do

not collapse if scaled by the three-body binding momentum κ3. The distribution functions for

p = 4 are notably broader than those for p > 4. Figures 7.9(a) and 7.11(a) suggest that the

distribution functions converge in the large p limit (i.e., in the three-body hardcore regulator

limit). Similar behavior is observed for other N . As shown in the insets of Figs. 7.9(b) and

7.11(a), the distribution functions collapse to a very good approximation to a single curve

if scaled by the binding momentum κN of the N -body droplet. This can be understood as

a new type of universality, which is weaker than the “Efimov universality”: The binding

momentum κN allows one to collapse the distribution functions for the models 2bZR+3bRp

for sufficiently large p but κN is not determined by κ3 (the latter would constitute “Efimov

universality”). The dominance of κN arises because the vast majority of the wave function

amplitude is located in the classically forbidden region [308] (for pure zero-range interactions,

the classically allowed region is reduced to a single point).

At the three-body level, the angular distribution functions for the models 2bZR+3bRp

and 2bZR+3bZR coincide since the hyperradial and hyperangular degrees of freedom sep-

arate. This is not the case for N > 3, since the three-body regulator depends on the

N -body hyperradius and a subset of the 3N − 4 hyperangles. For fixed N , we find that

the dependence of the angular distribution functions Ptot(θ) on the power p of the three-

body regulator is small [much smaller than the dependence of Ppair(r) and Ptriple(R) on p].

Figure 7.12 shows the angular distribution function Ptot(θ) for N -boson clusters interact-

ing through 2bZR+3bR6 for various N . The lines from top to bottom at θ = 0 are for

N = 5, 6, 7, 9, and 13. As the number of particles increases, the probability of finding tri-

angles with small angles decreases but remains finite. Intuitively, this is because Ptot(θ)
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Figure 7.12: Angular distribution Ptot(θ) for N -boson clusters interacting through the model
2bZR+3bRp with p = 6. The lines from top to bottom at θ = 0 are for N = 5, 6, 7, 9, and
13.

accounts for all the trimer configurations and not just the “closest trimers”.

Combining the information displayed in Figs. 7.6–7.12, the key characteristics of the

ground state of N -boson droplets interacting through the model 2bZR+3bRp with p ≥ 4

can be summarized as follows: (i) The dependence of the energy and the structural properties

on the three-body regulator decreases with increasing p; (ii) the dependence of the energy and

the structural properties on the three-body regulator cannot be explained by simple length

scale arguments (the separation of scales is largest for the p = 4 regulator and smallest for

the p = 8 regulator); (iii) the pair and triple distribution functions collapse to a very good

approximation to a single curve if scaled by the binding momentum of the N -body system,

suggesting that 1/κN and not 1/κ3 is the governing length scale for N > 3.

7.5 Results for other interaction models

We now compare the findings for N -boson systems interacting through the model 2bZR+

3bRp with p = 4− 8 (see the previous section) with those for N -boson systems interacting

through the models 2bG, 2bLJ, 2b10-6 and 2b8-6.

We start our discussion with the model 2bG, for which the energy per particle scales, to

a very good approximation, linearly with N for N & 6 [see diamonds in Fig. 7.6(a)]. The
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model 2bG has no repulsive core and is characterized by a single length scale, the width r0.

Using a simple variational Gaussian product wave function in the single-particle coordinates,

one can readily show that the ground state energy scales as N2 and that the peak density

increases quadratically with N . Indeed, our calculations shown in Figs. 7.8(b) and 7.10 for

up to N = 15 clearly support that the droplet shrinks with increasing N . As can be seen in

Fig. 7.8(b), the average interparticle distance quickly decreases to a value smaller than r0.

We conclude that the N2 scaling of the energy for the model 2bG predominantly reflects the

absence of a repulsive core in the potential energy and less so Efimov characteristics.

Next, we discuss the properties of the Hamiltonian interacting through the van der Waals

models 2bLJ, 2b10-6, and 2b8-6. Our calculations at unitarity are performed using the same

atomic mass and the same c6 coefficient for the three models while the short-range coefficients

are tuned such that the dimer supports a single s-wave bound state with zero energy. For

the three-body system, we find κ3LvdW = 0.230 for the model 2bLJ, κ3LvdW = 0.233 for

the model 2b10-6, and κ3LvdW = 0.245 for the model 2b8-6, i.e., the three-body binding

momentum depends weakly on the short-range scale of the two-body potential. The N -

body energies per particle, in units of the three-body energy per particle, are summarized in

Table 7.4. These energies are obtained by the DMC approach [124]. Dividing the N -body

energies by the corresponding three-body energy, the energy per particle curves for the three

van der Waals interaction models nearly collapse [see Fig. 7.6(c)]. This can be interpreted

as van der Waals universality in the N -body sector. Due to the repulsive core, the energy

per particle flattens around N = 10, indicating that the system starts to grow outward, i.e.,

starts to form a “second layer” (of course, the system is liquid-like and individual layers

cannot be identified). Consistent with this, Fig. 7.8(c) shows that the average interparticle

distance first decreases with increasing N and then slowly increases for N & 8.

The dashed line in Fig. 7.11(b) shows the pair distribution function of the N = 13 system

interacting through the model 2bLJ. The amplitude in the small r region is suppressed
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Table 7.4: DMC energies for the Hamiltonian with two-body van der Waals interactions
for N = 4 − 15. Columns 2-4 show the scaled energy EN/N/(E3/3) for the models 2bLJ,
2b10-6, and 2b8-6, respectively. The error bars (not explicitly reported) are around 1%.

N 2bLJ 2b10-6 2b8-6
4 3.978 3.953 3.960
5 7.827 7.841 7.887
6 11.95 11.99 12.12
7 16.07 16.15 16.40
8 20.09 20.24 20.59
9 23.94 24.15 24.69
10 27.57 27.89 28.57
11 31.07 31.44 32.29
12 34.37 34.81 35.86
13 37.50 38.02 39.25
14 40.46 41.06 42.41
15 43.27 43.97 45.46

compared to the other interaction models considered due to the repulsive two-body core.

Scaling r2Ppair(r) using κ13 (not shown) does not bring the pair distribution function for the

model 2bLJ in agreement with the scaled pair distribution functions shown in the inset of

Fig. 7.11(a) for the model 2bZR+3bRp with p = 4− 8. This reflects the fact that a notably

smaller fraction of the wave function amplitude resides in the classically forbidden region for

the model 2bLJ than for the model 2bZR+3bRp with p = 4− 8.

As already mentioned in Sec. 7.3, Eq. (7.4) applies, according to Ref. [290], not only to sys-

tems with zero-range interactions but also to systems with finite-range two-body interactions.

To assess the applicability of Eq. (7.4), we denote the left hand side of Eq. (7.4) by κapprN /κ3

and plot the normalized difference between κapprN /κ3 and the exact κN/κ3, as determined by

our calculations. Circles and triangles in Fig. 7.13 shows the quantity (κapprN − κN)/κN for

the models 2bG and 2bLJ, respectively. For N = 3 and N = 4, the normalized difference

is zero by construction. For N > 4, the normalized difference is negative for the model

2bG and positive for the model 2bLJ. The deviations from the functional form proposed by

Gattobigio et al. increase roughly linearly with N for the model 2bLJ, reaching 13% for
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Figure 7.13: Assessing the applicability of Eq. (7.4) for N -boson systems with two-body
finite-range interactions at unitarity. Circles and triangles show the normalized difference
(κapprN − κN)/κN for the models 2bG and 2bLJ, respectively, as a function of the number of
particles N .

N = 15, and non-linearly for the model 2bG, reaching −20% for N = 15. Thus if high

accuracy predictions are sought, then Eq. (7.4) should be used with caution.

7.6 Conclusions

This paper studied weakly-bound Bose droplets at unitarity. These systems are obtained

by adding one atom at a time to an Efimov trimer or a weakly-bound trimer with Efi-

mov characteristics. We carefully analyzed the three-body system and then studied larger

systems.

The three-body ground state of the Hamiltonian with two-body zero-range interactions

and repulsive three-body potential (model 2bZR+3bRp) is a nearly ideal Efimov state. The

premise was (see also Ref. [7]) that this would allow us to determine the universal properties

of droplets tied to a three-body Efimov state by studying N -body ground states. Somewhat

surprisingly, we found dependences of the ground state cluster properties on the three-body

regulator, suggesting that the ground states become less universal with increasing N . This is

a somewhat disappointing finding as the treatment of N -body excited and resonance states,

which are expected to exhibit universal characteristics, is a computationally much more

demanding task. Yet, our study revealed a different type of universality for these model
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Hamiltonian. We found that if the lengths are scaled by the N -body binding momentum,

then the dependence on the three-body regulator diminishes notably. This suggests that

the ground states of these systems are halo states [308], i.e., states whose amplitude is

predominantly located in the classically forbidden region. The N -body binding momentum

itself is, however, not—as it would be in the case of N -body Efimov universality—determined

by the three-body binding momentum, especially not as N increases.

Hamiltonian with two-body van der Waals interaction at unitarity were also investigated.

It was found that the energy per particle, if scaled by the three-body energy, collapses to

a very good approximation to a single curve, suggesting that the short-range details of the

van der Waals interaction impact the three- and higher-body sectors in a similar manner

(i.e., the short-range details are to a very good approximation “taken out” by scaling by

the three-body energy). The calculations presented were for Lenard-Jones and modified

Lenard-Jones potentials; the latter potentials have a −c6/r
6 tail but a softer repulsive core

at small distances than typical van der Waals interactions. We also performed calculations

for (i) the true helium-helium potential scaled by an overall factor such that the s-wave

scattering length is infinitely large and (ii) the true helium-helium potential with modified

short-range potential such that the s-wave scattering length is infinitely large (these models

were labeled He-He(scale) and He-He(arctan) in Ref. [301]). The energy per particle curves

for these systems, which have a more complicated long-range tail, also collapse, to a very

good approximation, to the same curves as those for 2bLJ, 2b10-6, and 2b8-6 if scaled by

the three-body energy. The structural properties, specifically the pair and triple distribution

functions, for the van der Waals systems do not collapse to the same curves as those for

the 2bZR+3bRp model with p = 4 − 8 if scaled using the N -body binding momentum κN ,

suggesting that a good portion of the wave function amplitude of the van der Waals systems

is located in the classically allowed region.

In the future, it would be interesting to extend the calculations presented here to excited
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and resonance states. We expect that the N -body properties become universal if suffi-

ciently high excitations are being considered. In the four-body sector, e.g., Deltuva [285]

extracted the universal numbers for κ4/κ3 by going to high-lying resonance states (in this

case, “high-lying” means third or higher resonance states). Extending calculations such as

those conducted by Deltuva to N > 4 is, however, challenging. It would also be interesting

to extend the studies presented in this paper to finite s-wave scattering lengths and to Bose

droplets with an impurity.
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7.7 Supplemental material

The PIMC energies reported in Table II of the main text were obtained using the “fourth-

order propagator” described in Ref. [289] using a fixed time step of 0.00045/E3. Table 7.5

summarizes the energies obtained by extrapolating the energies obtained using the second-

order propagator for 3-4 different time steps to the zero time step limit. Comparison of Table

II of the main text and Table 7.5 shows that the energies for the model 2bZR+3bRp with

p = 5− 7 obtained by the two different approaches agree within error bars (for p = 4 and 8,

we did not perform calculations using the fourth-order propagator).

Table 7.6 reports our DMC energies, obtained by extrapolating energies for 4-5 finite

time steps to the zero time step limit, for the models He-He(scale) and He-He(arctan) [301].
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Table 7.5: PIMC energies for the model 2bZR+3bRp for N = 5 − 15. Columns 2-6 show
the scaled energy EN/N/(E3/3) for p = 4–8, respectively. The error bars (not explicitly
reported) are around 6%.

N 2bZR+3bR4 2bZR+3bR5 2bZR+3bR6 2bZR+3bR7 2bZR+3bR8
5 5.58 6.36 6.67 6.70 6.63
6 8.22 8.90 9.53 10.2 10.4
7 8.96 11.1 12.1 12.3 13.4
8 10.4 12.9 14.8 15.6 16.2
9 11.6 14.8 16.8 18.1 18.7
10 12.7 16.5 17.9 20.0 21.2
11 13.1 18.0 20.5 22.0 23.2
12 13.5 18.7 22.0 23.8 25.3
13 13.5 20.0 23.5 25.7 27.6
14 14.3 20.9 24.8 27.6 29.1
15 14.6 21.5 25.9 28.9 30.5

Table 7.6: DMC energies for the Hamiltonian with two-body van der Waals interactions for
N = 4−15. Columns 2-3 show the scaled energy EN/N/(E3/3) for the models He-He(scale)
and He-He(arctan), respectively. The error bars (not explicitly reported) are around 1%.

N He-He(scale) He-He(arctan)
4 3.952 3.936
5 7.761 7.737
6 11.81 11.78
7 15.86 15.80
8 19.76 19.67
9 23.50 23.38
10 27.06 26.87
11 30.40 30.11
12 33.60 33.26
13 36.60 36.18
14 39.45 38.81
15 42.16 41.66
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Chapter 8

Path integral Monte Carlo

determination of the fourth-order

virial coefficient for unitary
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zero-range interactions
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The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradig-

matic model system that is relevant to atomic, condensed matter, nuclear, particle, and

astro physics. This work determines the fourth-order virial coefficient b4 of such a strongly-
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interacting Fermi gas using a customized ab initio path integral Monte Carlo (PIMC) algo-

rithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude

of b4, our b4 agrees within error bars with the experimentally determined value, thereby

resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach de-

termines the fourth-order virial coefficient by directly sampling the partition function. An

on-the-fly anti-symmetrization avoids the Thomas collapse and, combined with the use of

the exact two-body zero-range propagator, establishes an efficient general means to treat

small Fermi systems with zero-range interactions.

8.1 Introduction

Strongly-interacting Fermi gases manifest themselves in nature in different forms, from neu-

trons in neutron stars [309] to electrons in solids [310]. These systems are generally deemed

difficult to treat theoretically because of the lack of a small interaction parameter. Super-

conductivity [311] and exotic states such as fractional quantum hall [312] or Fulde-Ferrell-

Larkin-Ovchinnikov [313–315] states have been observed or predicted to exist in these sys-

tems. Ultracold Fermi gases [32, 203], which can nowadays be produced routinely in table-top

experiments, are ideal for studying strongly-interacting systems since (i) the van der Waals

interaction is short-ranged, which means that it can be approximated by a contact potential

that introduces a single length scale, i.e., the s-wave scattering length as; and (ii) as can be

tuned at will utilizing Feshbach resonance techniques [4]. When as diverges, i.e., becomes

infinitely large, the two-body contact potential does not define a length scale [316]. Just like

the non-interacting Fermi gas, the properties of the unitary Fermi gas (Fermi gas with infi-

nite as) are determined by two length scales, the de Broglie wavelength λ and interparticle

spacing r̄ [317].

At high temperature, λ is much smaller than r̄ and the grand canonical thermodynamic

potential Ω can be expanded in terms of the fugacity [87, 143]. The nth-order expansion
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or virial coefficient bn is determined by the partition functions of clusters containing n or

fewer fermions. Since all thermodynamic properties at high temperature can be derived

from the virial coefficients bn [89], the bn’s are essential to understanding the normal state

of strongly-interacting Fermi gases.

While the second- and third-order virial coefficients are well understood [87–89, 318–

320], none of the theoretical calculations for b4 [2, 321–323] agree with the experimental

data [11, 320]. This letter rectifies this situation: our theoretically determined b4 agrees

with the experimentally determined value. Our approach uses a trap regulator and em-

ploys the path integral Monte Carlo (PIMC) technique [19, 133], with the contact interac-

tions incorporated exactly via the two-body zero-range propagator [289]. The “post-anti-

symmetrization” [19, 133], traditionally employed in PIMC calculations, does not work for

the system with zero-range interactions, since the sampled paths shrink due to the Thomas

collapse, a well known phenomenon for bosons [41, 43], to a single point. For bosons, the

three-body Thomas collapse is cured by introducing an additional scale or three-body pa-

rameter [41]. For fermions, such a three-body parameter is not needed since the Pauli

exclusion principle acts as an effective three-body repulsion [71, 324]. Thus, rather than the

standard “post-anti-symmetrization”, we use an “on-the-fly scheme” [134, 325], which anti-

symmetrizes at each imaginary time step. While the anti-symmetrization is, within Monte

Carlo frameworks, usually associated with the infamous Fermi sign problem [97–99], in our

case it stabilizes the simulation and affords the use of significantly smaller number of time

slices than the use of finite-range interactions would. Our approach reproduces the trap reg-

ulated b3 over a wide temperature range. We determine the trap regulated b4 as a function

of the temperature T . In the low-temperature regime, we find agreement with Ref. [2]. We

separate the spin-balanced (b2,2/2) and spin-imbalanced (b3,1) sub-cluster contributions to

b4, b4 = b3,1 + b2,2/2, and find b2,2 < 0 and b3,1 > 0 at all considered temperatures. b2,2

dominates at low T and b3,1 at high T . Converting the trap regulated virial coefficient b4 to
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that of the homogeneous system using the local density approximation (LDA) [88], we find

agreement with the experimentally determined values [11, 320].

8.2 Virial expansion framework

The nth-order virial coefficient bhom
n of the homogeneous system at unitarity is related to the

high-temperature limit b0
n of the harmonically trapped unitary system via bhom

n = n3/2b0
n [88].

To determine b0
n, we calculate the virial coefficient bn of the harmonically trapped system for

various temperatures and then take the T → ∞ limit. The trap Hamiltonian H(n1, n2) for

n1 particles of species 1 and n2 particles of species 2 with interspecies s-wave interactions

reads

H(n1, n2) =

n1+n2∑
j=1

(
−~2

2m
∇2

rj
+

1

2
mω2r2

j

)
+

n1∑
i=1

n1+n2∑
j=n1+1

V2b(ri − rj), (8.1)

where m denotes the mass of the particles, rj the position vector of the jth particle, ω

the angular trapping frequency, and V2b the regularized Fermi-Huang pseudopotential with

infinite as [3]. The grand canonical thermodynamic potential Ω can be written in terms of

the fugacities zi of species i,

Ω = −kBT ln

(
∞∑

n1=0

∞∑
n2=0

Qn1,n2z
n1
1 zn2

2

)
, (8.2)

where zi is equal to exp[µi/(kBT )], µi is the chemical potential of species i, and Qn1,n2 is the

canonical partition function for H(n1, n2),

Qn1,n2 = Tr exp [−H(n1, n2)/(kBT )]. (8.3)
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Here, Tr is the trace operator. Defining ∆Ω = Ω − Ωni, where Ωni is the grand canonical

potential of the non-interacting system, and Taylor expanding around z1 = z2 = 0 [326, 327],

one finds

∆Ω = −kBTQ1,0

(
∞∑

n1=1

∞∑
n2=1

bn1,n2z
n1
1 zn2

2

)
. (8.4)

For spin-balanced systems, z1 and z2 are equal and Eq. (8.4) reduces to

∆Ω = −2kBTQ1,0

(
∞∑
n=2

bnz
n

)
, (8.5)

where b2 = b1,1/2, b3 = (b1,2 + b2,1)/2, and b4 = (b1,3 + b3,1 + b2,2)/2 (note, one has b2,1 = b1,2

and b3,1 = b1,3). It is convenient to write the virial coefficients bn1,n2 as

bn1,n2 = ∆bn1,n2 + bref
n1,n2

, (8.6)

where bref
n1,n2

is determined by the virial coefficients bj1,j2 and the canonical partition functions

Qj1,j2 with j1 + j2 < n1 + n2. The term ∆bn1,n2 = (Qn1,n2 − Qni
n1,n2

)/Q1,0, where Qni
n1,n2

=

Qn1,0Q0,n2 , in contrast, accounts for the “new” physics introduced by the interacting (n1, n2)

clusters [328].

8.3 Contradicting literature results for b4

Two independent experiments find consistent values for the fourth-order virial coeffi-

cient, namely, bhom
4 = 0.096(15) [320] and 0.096(10) [11], or b0

4 = 0.01200(188) and

b0
4 = 0.01203(125). The theoretical literature results, however, disagree with these experi-

mental results [329], reflecting the fact that the fourth-order problem is highly non-trivial

analytically and numerically. Using a sum-over-states approach with an energy cutoff, Ref. [2]

obtained the low-temperature behavior of b4. Assuming a monotonic temperature depen-
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dence and extrapolating to the T → ∞ limit, Ref. [2] obtained b0
4 = −0.0020(5). It was

concluded that more four-body energies would need to be calculated explicitly to obtain

b4 reliably at high temperature. Applying a conjecture inspired by analytical three-body

results, Refs. [322, 323] found b0
4 = −0.007875(125). Last, a diagrammatic approach [321],

which included only a subset of the four-body free-space diagrams, obtained bhom
4 = 0.06 or

b0
4 = 0.0075.

8.4 Customized PIMC algorithm

∆bn1,n2 is determined by the partition function Qn1,n2 of the interacting (n1, n2) system

(Qn1,n2 is not known in general) and the partition function Qni
n1,n2

of the non-interacting

(n1, n2) system (Qni
n1,n2

is known analytically). We calculate the ratio of the partition func-

tions Qni
n1,n2

/Qn1,n2 using the PIMC technique. Specifically, the simulation generates con-

figurations according to Qn1,n2 and accumulates the ratio Qni
n1,n2

/Qn1,n2 as a weight. The

reason for using the partition function of the unitary Fermi gas and not that of the non-

interacting gas as the “guiding function” is the following. The probability density to find

two unlike particles with vanishing interparticle spacing is finite at unitarity and zero in the

non-interacting limit. If we used Qni
n1,n2

as the guiding function, configurations in which two

unlike particles are at the same spatial position would be absent and the standard deviation

of Qn1,n2/Q
ni
n1,n2

would be infinite, rendering the expectation value meaningless [330].

In the PIMC formulation, the partition function Qboltz
n1,n2

(β) for Boltzmann particles (no

exchange symmetries) at inverse temperature β, β = (kBT )−1, is written in terms of a

product over density matrices at imaginary time τ ,

Qboltz
n1,n2

(β) =

∫
. . .

∫ N∏
i=1

ρ(Ri,Ri+1; τ)dR1 . . . dRN , (8.7)

where Ri collectively denotes the particle configurations at time slice i, RN = R1, and
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N = β/τ . For the two-component Fermi gas, the standard PIMC approach writes the

partition function as Qn1,n2 = AQboltz
n1,n2

, where A is the anti-symmetrizer [19, 331]. For

the two-component Bose gas, the anti-symmetrizer A is replaced by the symmetrizer S. A

and S contain the same number and types of terms; however, while all terms in S enter

with a plus sign, A contains alternating plus and minus signs. Since the symmetrizer and

anti-symmetrizer are, in the standard PIMC approach, evaluated stochastically, the two-

component Fermi and Bose gases are simulated using the same paths. Expectation values,

however, are accumulated with plus and minus signs for fermions and with plus signs only

for bosons. We refer to this standard approach as post-symmetrization. The bosonic system

with interspecies two-body zero-range interactions but without a three-body regulator would

collapse to a single point; this is the well-known Thomas collapse [43]. Correspondingly, the

fermionic paths would also collapse, rendering the simulation meaningless. To get around this

problem, we developed a customized on-the-fly anti-symmetrization scheme, which explicitly

anti-symmetrizes the density matrix at each imaginary time step,

Qn1,n2(β) =

∫
. . .

∫ N∏
i=1

Aρ(Ri,Ri+1; τ)dR1 . . . dRN . (8.8)

The observable is then calculated using

Qni
n1,n2

Qn1,n2

=

〈
N∏
i=1

Aρni(Ri,Ri+1; τ)

Aρ(Ri,Ri+1; τ)

〉
, (8.9)

where ρni denotes the density matrix for the non-interacting system and 〈. . . 〉 the ther-

mal average using paths generated for the unitary Fermi gas using the on-the-fly anti-

symmetrization scheme. Our simulation uses the pair-product approximation [19, 329] with

the exact two-body density matrix for zero-range interactions. The on-the-fly scheme em-

ployed here is related to earlier works [325, 332], which anti-symmetrized, as we do, at each

time slice. The key difference is that we employ a density matrix that accounts for the
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interactions while the earlier works employed the non-interacting density matrix together

with the Trotter (or improved Trotter) formula.

The on-the-fly anti-symmetrization scheme treats the n1!n2! permutations explicitly at

each time slice, eliminating the need of the standard stochastic “permute move”. As a

consequence, the scheme is computationally prohibitively demanding for large systems. For

small systems, however, it is quite efficient for three reasons: (i) The number of permutations

is manageable for small n1 + n2. (ii) The use of the zero-range interactions eliminates the

need to perform calculations for several different ranges of the underlying two-body potential.

(iii) Compared to finite-range interactions [10], the number of time slices needed to reach

convergence for the zero-range interacting systems considered here is rather small; e.g., our

scheme yields Qni
3,1/Q3,1 at Eho/(kBT ) = 0.8 with 0.1% error using only N = 9 imaginary

time slices (here, Eho = ~ω). Within our approach, the key challenge in determining b4

reliably at high temperature comes from the fact that ∆b2,2, ∆b3,1, bref
2,2, and bref

3,1 diverge,

to leading order, as (kBT/Eho)6. This implies that b2,2 and b3,1 are, at high temperature,

obtained by adding two numbers of opposite sign and nearly equal magnitude. Thus, to

obtain reliable values at high temperature, we need to determine our observables with high

accuracy. In practice, our available computer time limits us to kBT ≤ 2Eho for the (2,2) and

(3,1) systems.

8.5 PIMC results

To benchmark our customized PIMC algorithm, we apply it to the (2,1) system at unitarity,

for which Qni
2,1/Q2,1 and b3 can be calculated with high accuracy for all temperatures using

the sum-over-states approach [88]. As an example, circles in Fig. 8.1(a) show the quantity

Qni
2,1/Q2,1 for kBT = Eho, obtained using our PIMC algorithm, as a function of the imaginary

time step τ . The τ considered correspond to between N = 4 and 10 time slices. The

simulation is exact in the τ → 0 (or equivalently, N → ∞) limit. To extrapolate to the
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Figure 8.1: Benchmarking our PIMC results (circles) for the (2,1) system at unitarity
through comparison with sum-over-states results. (a) The observable Qni

2,1/Q2,1 as a function
of the imaginary time step τ at kBT = Eho. The circles show our PIMC results. The error
bars (not shown) are smaller than the symbol size. The solid line shows the fourth-order
polynomial fit of the form a+ bτ 2 + cτ 4. The dashed line shows the sum-over-states results.
(b) b3 as a function of 1/(kBT ). The circles show our PIMC results while the solid line shows
the sum-over-states results.

τ → 0 limit, we fit a fourth-order polynomial of the form a + bτ 2 + cτ 4 to the PIMC

data [solid line in Fig. 8.1(a)]. Our extrapolated result of 0.499989(26) agrees within error

bars with the value of 0.500014 [dashed line in Fig. 8.1(a)] obtained by the sum-over-states

approach. Using the extrapolated τ → 0 values for Qni
2,1/Q2,1 at various temperatures, we

obtain b3 as a function of T [circles in Fig. 8.1(b)]. The agreement with the sum-over-states

results [solid line in Fig. 8.1(b)] is excellent for all T considered, demonstrating the reliability

and accuracy of our PIMC approach.

We now discuss the determination of b4. The extrapolation of the raw data to the τ → 0

limit is discussed in the supplemental material [329]. Circles in Figs. 8.2(a) and 8.2(b) show

our PIMC results for b3,1 and b2,2, respectively, as a function of the inverse temperature.

At low temperature, the PIMC results agree with the sum-over-states results (solid lines),

obtained using the data provided in Ref. [2]. At all temperatures, b3,1 is positive and b2,2 is

negative. To obtain b0
3,1 and b0

2,2, we fit the data points for the four highest temperatures to

the form a+ b[Eho/(kBT )]2. The dashed lines in Figs. 8.2(a) and 8.2(b) show the fits. Since

the data points at kBT = 2Eho have much larger error bars than those at lower temperatures,

the data points contribute comparatively little to the fit, which weighs each data point by the

inverse of the square of its error bar. We find b0
3,1 = 0.0212(8) and b0

2,2/2 = −0.0115(8), where
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Figure 8.2: PIMC determination of the fourth-order virial coefficient. Circles in panels (a),
(b), and (c) show b3,1, b2,2/2, and b4, respectively, determined by our PIMC approach. The
crosses in (a) and (b) show the T → ∞ limit of the two-parameter fit (dashed line) to the
PIMC data at the four highest temperatures. The dashed line and the cross in (c) show the
sum of the fits from (a) and (b). The error bar in (c) is obtained by error propagation. The
diamond with error bar shows the experimental result from Ref. [11].
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the error bars reflect the uncertainty of the fit. We unfortunately do not have sufficiently

many data to include a (kBT )−4 term in the fit. Since the inclusion of a (kBT )−4 term

in the fit could alter the T → ∞ result, we add a systematic error of 0.0008 to b0
3,1 and

b0
2,2/2, yielding b0

3,1 = 0.0212(16) and b0
2,2/2 = −0.0115(16) [crosses in Figs. 8.2(a) and

8.2(b)]. To obtain b4 [see Fig. 8.2(c)], we combine b3,1 and b2,2. Specifically, the circles

and the fit are obtained by adding the data of Figs. 8.2(a) and 8.2(b) while the cross at

T →∞ is obtained using standard error propagation. b4 displays an interesting temperature

dependence: It is negative at low temperature due to the dominance of b2,2, vanishes at

kBT ≈ Eho due to a cancellation of b3,1 and b2,2/2, and is positive at high temperature due

to the dominance of b3,1. Our results resolve the discrepancy of the sign of b4 between Ref. [2]

and the experiments [11, 320]. Our extrapolated b4 at infinite temperature is b0
4 = 0.0098(23),

which agrees with the experimental results of b0
4 = 0.01203(125) [11] [diamond in Fig. 8.2(c)]

and b0
4 = 0.01200(188) [320]. Using the LDA, we find bhom

4 = 0.078(18).

We now compare our results for b0
3,1 and b0

2,2 with the literature. The diagrammatic

approach [321] yields b0
3,1 = 0.025, which is within 2.5 standard deviations of our value, and

b0
2,2/2 = −0.018, which differs by a factor of about 1.5 (or many standard deviations) from

our value. This comparison suggests that the convergence of the diagrammatic approach is

slower for the (2,2) system than for the (3,1) system. The conjecture-based approach [322,

323] yields b0
3,1 = 0.02297(4), which agrees within error bars with our value, and b2,2/2 =

−0.0309(1), which differs by about a factor of 3 from our value. While the conjecture

put forward in Refs. [322, 323] is clearly invalidated for the (2,2) system, it remains an

open question if the agreement observed here for the (3,1) system should be interpreted as

supporting the conjecture or as being accidental.
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8.6 Conclusion

This letter presented the PIMC determination of the fourth-order virial coefficient of the

trapped unitary two-component Fermi gas. Our extrapolated infinite temperature result

was found to agree with experiments within error bars, which, to the best of our knowledge,

is the first numerical confirmation of the experimental determination of b4. The customized

PIMC scheme, which allows for the treatment of Fermi gases with zero-range interactions,

can be applied to a variety of other situations. Since the zero-range density matrix can be

constructed for arbitrary s-wave scattering length as, the scheme can be used to study the

finite-temperature characteristics of the BEC-BCS crossover of few-body Fermi gases. More-

over, the algorithmic developments can be integrated into PIMC ground state calculations,

providing a viable alternative to basis set expansion approaches.
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8.7 Supplemental material

The notation employed in this Supplemental Material follows that introduced in the main

text.

8.7.1 Literature values of b4

Table 8.1 summarizes the literature results for the fourth-order virial coefficient. The non-

interacting contribution to the total fourth-order virial coefficient bhom,tot
4 of the homogeneous
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system is given by

bhom,ni
n = (−1)n+1/n5/2; (8.10)

the interacting part of the fourth-order virial coefficient bhom
4 of the homogeneous system is

defined through

bhom
n = bhom,tot

n − bhom,ni
n . (8.11)

The interacting part of the fourth-order virial coefficient b0
4 of the harmonically trapped

system at high temperature and bhom
4 are related via (see also the main text),

bhom
n = n3/2b0

n. (8.12)

8.7.2 Pair product approximation and zero-range density matrix

Equation (9) of the main text writes the observable Qni
n1,n2

/Qn1,n2 in terms of the density ma-

trices ρni(Ri,Ri+1; τ) and ρ(Ri,Ri+1; τ) of the non-interacting and unitary (n1, n2)-particle

systems. To evaluate the density matrix by the PIMC approach, we use the pair product

Table 8.1: Summary of literature results. The value reported in the respective reference is
underlined. The conversion to other “representations” is done using Eqs. (8.10)-(8.12). The
column labeled “Ref.” refers to the bibliography of the main text.

bhom
4 bhom,tot

4 b0
4 Ref. comment

0.096(15) 0.065(15) 0.01200(188) [320] experiment

0.096(10) 0.065(10) 0.01203(125) [11] experiment

−0.016(4) −0.04725(40) −0.0020(5) [2] sum-over-states approach

0.06 0.02875 0.0075 [321] diagrammatic
−0.063(1) −0.09425(10) −0.007875(125) [322] 3-body inspired conjecture
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approximation [19],

ρ(R,R′; τ) ≈

(
n1+n2∏
j=1

ρsp(rj, r
′
j; τ)

)
×(

n1∏
j=1

n1+n2∏
k=n1+1

ρ̄rel(rj − rk, r
′
j − r′k; τ)

)
, (8.13)

where ρsp(r, r′; τ) is the single-particle density matrix [19],

ρsp(r, r′; τ) = a−3
ho [2π sinh(τ~ω)]−3/2 ×

exp

(
−(r2 + r′2) cosh(τ~ω)− 2r · r′

2 sinh(τ~ω)a2
ho

)
, (8.14)

and ρ̄rel(r, r′; τ) is the reduced pair density matrix of the relative two-body problem with

zero-range interaction [289],

ρ̄rel(r, r′; τ) = 1 +
2~2τ

mrr′
exp

(
−m(rr′ + r · r′)

2~2τ

)
. (8.15)

The density matrix ρni of the non-interacting system is given by Eq. (8.13) with ρ̄rel replaced

by 1.

8.7.3 Extrapolation to the τ → 0 limit and selected raw data

As mentioned in the main text, to determine bn with comparable percentage accuracy at all

temperatures, Qni
n1,n2

/Qn1,n2 has to be determined with increasing percentage accuracy with

increasing temperature. To ensure that our results are free of systematic errors, the error

introduced by the τ → 0 extrapolation has to be smaller than the error of the extrapolation

that arises from the statistical error of the individual PIMC data points. To illustrate this,

we consider the (2,1) system at the highest temperature considered, i.e., at kBT = 2Eho.

Circles in Fig. 8.3(a) show Qni
2,1/Q2,1, obtained by our PIMC approach, as a function of
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Figure 8.3: Benchmarking our PIMC results (circles) for the (2,1) system at unitarity
through comparison with sum-over-states results. The observable Qni

2,1/Q2,1 as a function
of the imaginary time step τ at temperature kBT = 2Eho. The error bars (not shown) are
smaller than the symbol size. In (a), the time steps correspond to N = 2, 3, 4, and 6. In
(b), the time steps correspond to N = 3, 4, 6, and 8. The solid line shows the fourth-order
polynomial fit of the form a+ bτ 2 + cτ 4. The dashed line shows the sum-over-states results.

the imaginary time step τ (the data correspond to N = 2, 3, 4, and 6). The solid line shows

a fourth-order fit of the form a + bτ 2 + cτ 4 to our PIMC data. The extrapolated τ → 0

value of 0.888949(8), where the error bar accounts for the statistical uncertainty of the PIMC

data, deviates by about 3 standard deviations (or 0.003%) from the sum-over-states result

of 0.8889755. We attribute the discrepancy to the fact that the τ considered are not small

enough for the fourth-order fit to be fully reliable. To corroborate this interpretation, we

(i) employ a sixth-order fit and (ii) apply the fourth-order fit to PIMC data for smaller τ .

The sixth-order fit (using, as before, the data corresponding to N = 2, 3, 4, and 6) yields

0.888964(19), in agreement with the sum-over-states result. Note, however, that the error

bar is much larger than that resulting from the fourth-order fit; the reason is that we are

attempting to determine four fit parameters using just four data points. Performing a fourth-

order fit to the PIMC data for N = 3, 4, 6, and 8 yields 0.888966(8), which almost agrees

with the sum-over-states approach within error bar and with an error bar that is comparable

to our previous fourth-order fit [see Fig. 8.3(b)]. This analysis suggests that our PIMC
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Table 8.2: Selected PIMC raw data. Columns 1 and 2 show the inverse temperature
Eho/(kBT ) and the number of imaginary time slices N , respectively. Columns 3 and 4 show
the observables Qni

3,1/Q3,1 and Qni
2,2/Q2,2 for the (3,1) and (2,2) systems, respectively.

Eho/(kBT ) N Qni
3,1/Q3,1 Qni

2,2/Q2,2

0.5 2 0.8413081(35) 0.7940517(46)
0.5 3 0.8418155(43) 0.7946990(43)
0.5 4 0.8420157(41) 0.7949482(45)
0.5 6 0.8421806(41) 0.7951732(53)
0.6 3 0.754475(16) 0.686274(11)
0.6 4 0.754955(12) 0.686860(11)
0.6 5 0.755218(12) 0.687174(14)
0.6 7 0.755450(13) 0.687445(14)
0.6 9 0.755591(15) 0.687587(14)
0.7 3 0.658547(24) 0.571429(24)
0.7 4 0.659464(22) 0.572473(14)
0.7 6 0.660203(26) 0.573329(22)
0.7 9 0.660583(29) 0.573764(23)
0.8 4 0.563935(34) 0.462752(36)
0.8 5 0.564662(35) 0.463530(33)
0.8 7 0.565379(36) 0.464433(32)
0.8 9 0.565708(38) 0.464757(33)

calculations are free of systematic errors provided we go to sufficiently small τ .

Table 8.2 lists the PIMC raw data for the (3,1) and (2,2) systems at various temperatures

(the data for low temperatures are not shown). We report the observables Qni
3,1/Q3,1 and

Qni
2,2/Q2,2 for various time slices. For Eho/(kBT ) = 0.6, 0.7, and 0.8, the largest number of

time slices considered is Nmax = 9. For Eho/(kBT ) = 0.5, our available computing resources

limit us to Nmax = 6, resulting in reduced accuracy of the observables.

For Eho/(kBT ) = 0.6, 0.7, and 0.8, we perform fourth-order fits to the τ -dependent

Qni
3,1/Q3,1 and Qni

2,2/Q2,2 data listed in Table 8.2, yielding extrapolated τ → 0 values with

error bars between 0.0024% and 0.016%. We estimate, based on our tests for the three-

body system, that these statistical errors are larger than the systematic error, which arises

from the use of the fourth-order fit. Hence the systematic uncertainty can be neglected. For

Eho/(kBT ) = 0.5, a fourth-order fit to the data given in Table 8.2 yields error bars of 0.0008%
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Table 8.3: Selected extrapolated PIMC results. Columns 1 and 2 show the inverse tem-
perature Eho/(kBT ) and the order used in the extrapolation, respectively. Columns 3 and
5 show the extrapolated τ → 0 observables Qni

3,1/Q3,1 and Qni
2,2/Q2,2 for the (3,1) and (2,2)

systems, respectively. Columns 4 and 6 show the resulting subcluster contributions b3,1 and
b2,2/2, respectively, to the fourth-order virial coefficient.

Eho/(kBT ) order Qni
3,1/Q3,1 b3,1 Qni

2,2/Q2,2 b2,2/2
0.5 6 0.842330(15) 0.0194(16) 0.795393(18) −0.0139(16)
0.6 4 0.755751(18) 0.0153(4) 0.687775(18) −0.0102(4)
0.7 4 0.660877(39) 0.0135(3) 0.574108(30) −0.0095(2)
0.8 4 0.566227(82) 0.0111(2) 0.465415(73) −0.0093(2)

and 0.001% for Qni
3,1/Q3,1 and Qni

2,2/Q2,2, respectively. Since we estimate the systematic fit

uncertainty to be, based on our analysis for the (2,1) system, about 0.003%, we deem the

fourth-order fit unreliable. Using a sixth-order fit (which yields a larger error bar), we find

the values listed in Table 8.3.
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Chapter 9

Conclusions

This thesis utilized the PIMC method and considered ultracold Bose and Fermi gases con-

sisting of up to fifteen particles with interspecies short-range interactions. A scheme to in-

corporate the zero-range interaction was developed, which enables direct PIMC simulations

for contact interactions in continuous space. Different systems at unitarity were considered:

i) Bose and Fermi gases with two-body finite-range interactions, ii) Bose gases with two-

body zero-range interaction and three-body repulsive interaction, and iii) Fermi gases with

two-body zero-range interaction. For systems with short-range interactions, we investigated

finite-temperature properties, extending our understanding of few-body systems beyond zero

temperature. For systems with zero-range interactions, we performed calculations for the

ground state of Bose droplets at unitarity with three-body repulsive interaction. This study

constitutes one of the few exploratory studies of the generalization of three-body Efimov

physics to N (N > 3) particles. We also performed calculations for few fermions with

zero-range interactions at unitarity, deepening our understanding of the unitary Fermi gas.

Zero-range interaction: Zero-range potentials have been widely used in analytical calcu-

lations to model the interactions between ultracold atoms [3, 32, 76, 145, 202]. Numerically,

however, short-range potentials are more commonly used than zero-range potentials. If finite-

range potentials are used, accurate calculations need to extrapolate to the zero-range limit
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from a series of finite-range calculations. This thesis presented a general scheme to treat

zero-range interactions in position space for simulations that utilize two-body propagators.

We provided several benchmark tests for the implementation in the PIMC algorithm. Al-

though not discussed in this thesis, the scheme was also found to work well within the PIGS

algorithm. The scheme has been incorporated into a real time propagation algorithm [333].

In independent works, the propagator has been applied to DMC simulations [268, 334]. The

approach developed in this thesis is based on the idea that, for short time or at high tem-

perature, the propagator is dominated by two-body physics. One natural question to ask

is: if we can fully solve the three-body problem, can we add a three-body correction to the

propagator in an elegant way? Because the particle statistics plays a huge role in the three-

body problem (e.g. there exist Efimov states at unitarity for equal-mass bosons but not

for equal-mass two-component fermions), an open question is: if and how will the statistics

enter into the three-body propagator?

PIMC for fermions: The PIMC method has been widely used to simulate bosonic systems

at finite temperature. For bosons, the algorithm shows a favorable scaling with increasing

system size. This thesis treated up to fifteen bosons. The calculation can be extended to more

particles with fairly tolerable increase of the computer time. For fermions, because of the

Fermi sign problem, there exist few exact PIMC simulations [332]. Most PIMC simulations

make approximations and one commonly employed approximate approach is the restricted

path integral Monte Carlo approach [335]. It should be noted that one-dimensional systems

can, typically, be treated exactly due to the simplicity of the nodal topology. This thesis

considered fermions in three dimensions with either finite- or zero-range interactions. The

studies presented add to the small number of exact PIMC treatments of small fermionic

systems. Furthermore, this thesis presented the first PIMC calculations for fermions with

zero-range interactions. Since the complexity of the problem scales exponentially with the

number of particles, the number of fermions that we treated is limited. If some controlled ap-
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proximation to the “anti-symmetrizer” could be made—using, e.g., group theoretical ideas—,

then simulations for fermions with zero-range interactions could be extended to more than

10 particles. If such an approach could be developed, it could be used to study the ground

state energy of the spin-balanced Fermi gas at unitarity and gain further insight into the

Bertsch parameter, which relates the scale invariant unitary Fermi gas to the non-interacting

gas [336, 337].

Other estimators: The PIMC method employed here considered canonical ensembles,

which means that all the paths are closed. With additional “moves”, the PIMC algorithm

can be generalized to grand canonical ensembles. This generalization, sometimes known

as worm algorithm, includes open paths [102]. Importantly, the worm algorithm is not

only capable of treating systems in the grand canonical ensemble but also in the canonical

ensemble. The “trick” of using worms in the canonical ensemble is to restrict the moves such

that the closed paths sampled always correspond to the desired number of particles. The use

of open paths improves the ergodicity of the sampling [102]. It is, however, an open question

whether the use of open paths would improve the numerical efficiency for the small systems

considered in this thesis. Moreover, utilizing open paths (one open path and N − 1 closed

paths), the condensate fraction can be extracted from the long-range correlations of the two

ends of the open path (ODLRO of the one-body density matrix) [19]. Similarly, one might be

able to extract the pair momentum distribution from the two-body density matrix by using

two open paths and N−2 closed paths [338]. The pair momentum distribution could be used

to analyze Fulde-Ferrell-Larkin-Ovchinnikov states [264, 313–315] of small systems. Other

estimators that can be calculated by the PIMC approach include the Rényi entanglement

entropy [339, 340], which is important in quantum information science and, very recently,

stimulated research in few-body cold atom systems [341].

Extended Efimov scenario: The three-body Borromean state predicted by Efimov has

been verified in ultracold experiments [80, 295, 296, 300, 342–345]. For N > 3, there exist
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N -body bound states attached to each three-body state. The ratio of the energies of the

N -body resonance state (i.e., an N -body state attached to a highly excited three-body

bound state) to the three-body state should be independent of the details of the interaction

potential [41]. Both Nicholson [9] and Gattobigio et al. [1] predicted that the energy of an

N -body resonance state scales, to leading order, quadratically with the number of particles.

This thesis determined the lowest N -body bound state attached to the three-body ground

state for systems at unitarity consisting of bosons with two-body zero-range interactions and

three-body repulsive interactions. In contrast to earlier work [7], we found that the N -body

ground state energy depends on the three-body regulator. The dependence on the three-

body regulator is expected to decrease for the higher-lying resonance states. To calculate

the energy of N -body resonance states, alternative techniques have to be employed because

the PIMC approach is only capable of treating systems in the ground state or at finite

temperature.

Virial coefficient: The third-order virial coefficient b3 of the unitary equal-mass two-

component Fermi gas has been calculated numerically [88] and verified experimentally [320].

None of the previous numerical calculations [2, 321–323] for the fourth-order virial coefficient

b4 agree with the experimentally determined results [11, 320]. This thesis determined b4

numerically and found, for the first time, agreement with the experimentally determined

results. This verification could provide a benchmark for further refinement of b4 and stimulate

the experimental determination of even higher-order virial coefficients. Recently [346], Endo

et al. updated their earlier conjecture [322, 323]. The updated conjecture agrees with our

calculations at high and low temperatures. If the newly proposed conjecture can be proved,

it would yield a more accurate value of b4.

Other physical systems: Using the tools developed in this thesis, many interesting prob-

lems not considered in this thesis can be simulated. Systems of interest include: i) A single

particle immersed in a BEC background with interspecies interactions. This problem directly
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relates to the original Fröhlich polaron model [347]. ii) Fermions with zero-range interac-

tion and finite scattering length. For this system, the finite-temperature properties of the

BEC-BCS crossover would be of particular interest. iii) Systems with unequal masses. For

example, it would be interesting to calculate the virial coefficients for the two-component

Li-K Fermi gas at unitarity.

241



Bibliography

[1] M. Gattobigio and A. Kievsky, “Universality and scaling in the N -body sector of
Efimov physics,” Phys. Rev. A 90, 012502 (2014).

[2] D. Rakshit, K. M. Daily, and D. Blume, “Natural and unnatural parity states of small
trapped equal-mass two-component Fermi gases at unitarity and fourth-order virial
coefficient,” Phys. Rev. A 85, 033634 (2012).

[3] K. Huang and C. N. Yang, “Quantum-Mechanical Many-Body Problem with Hard-
Sphere Interaction,” Phys. Rev. 105, 767 (1957).

[4] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold
gases,” Rev. Mod. Phys. 82, 1225 (2010).

[5] R. J. Donnelly and C. F. Barenghi, “The Observed Properties of Liquid Helium at the
Saturated Vapor Pressure,” J. Phys. Chem. Ref. Data 27, 1217 (1998).

[6] For the (4, 1) system, the results derived from the basis set expansion approach cover
the temperature range kBT . 0.1Eho. The results derived from the PIMC approach
cover the temperature range kBT & Eho. For this system, we did not treat the temper-
ature regime between 0.1Eho . kBT . Eho. Nevertheless, our results suggest that C4,1

exhibits a maximum at finite T , like the other maximally polarized systems considered
in this paper.

[7] J. von Stecher, “Weakly bound cluster states of Efimov character,” J. Phys. B 43,
101002 (2010).

[8] A. Deltuva, R. Lazauskas, and L. Platter, “Universality in Four-Body Scattering,”
Few-Body Syst. 51, 235 (2011).

[9] A. N. Nicholson, “N -Body Efimov States from Two-Particle Noise,” Phys. Rev. Lett.
109, 073003 (2012).

[10] Y. Yan and D. Blume, “Temperature dependence of small harmonically trapped atom
systems with Bose, Fermi, and Boltzmann statistics,” Phys. Rev. A 90, 013620 (2014).

[11] M. J. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein, “Revealing the superfluid
lambda transition in the universal thermodynamics of a unitary Fermi gas,” Science
335, 563 (2012).

242

http://dx.doi.org/ 10.1103/PhysRevA.90.012502
http://dx.doi.org/ 10.1103/PhysRevA.85.033634
http://dx.doi.org/10.1103/PhysRev.105.767
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1063/1.556028
http://dx.doi.org/ 10.1088/0953-4075/43/10/101002
http://dx.doi.org/ 10.1088/0953-4075/43/10/101002
http://dx.doi.org/10.1007/s00601-011-0227-8
http://dx.doi.org/ 10.1103/PhysRevLett.109.073003
http://dx.doi.org/ 10.1103/PhysRevLett.109.073003
http://dx.doi.org/10.1103/PhysRevA.90.013620
http://dx.doi.org/10.1126/science.1214987
http://dx.doi.org/10.1126/science.1214987


[12] D. R. Tilley and J. Tilley, Superfluidity and Superconductivity, 3rd ed. (Institute of
Physics Publishing, Bristol and Philadelphia, 1990).

[13] P. Kapitza, “Viscosity of liquid Helium below the λ-point,” Nature (London) 141, 74
(1938).

[14] J. F. Allen and A. D. Misener, “Flow Phenomena in Liquid Helium II,” Nature (Lon-
don) 142, 643 (1938).

[15] H. E. Hall and W. F. Vinen, “The Rotation of Liquid Helium II. II. The Theory of
Mutual Friction in Uniformly Rotating Helium II,” Proc. R. Soc. London, Ser. A 238,
215 (1956).

[16] D. D. Osheroff, R. C. Richardson, and D. M. Lee, “Evidence for a New Phase of Solid
He3,” Phys. Rev. Lett. 28, 885 (1972).

[17] D. D. Osheroff, W. J. Gully, R. C. Richardson, and D. M. Lee, “New Magnetic
Phenomena in Liquid He3 below 3 mK,” Phys. Rev. Lett. 29, 920 (1972).

[18] A. J. Leggett, “Interpretation of Recent Results on He3 below 3 mK: A New Liquid
Phase?” Phys. Rev. Lett. 29, 1227 (1972).

[19] D. M. Ceperley, “Path integrals in the theory of condensed helium,” Rev. Mod. Phys.
67, 279 (1995).

[20] W. Krauth, Statistical Mechanics: Algorithms and Computations, Oxford Master Series
in Physics (Oxford University Press, Oxford, UK, 2006).

[21] Bose, “Plancks Gesetz und Lichtquantenhypothese,” Zeitschrift fur Physik 26, 178
(1924).

[22] Einstein, A., “Quantentheorie des einatomigen idealen Gases,” Sitzungsberichte der
Preussischen Akademie der Wissenschaften 1, 3 (1925).
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T. Jahnke, and R. Dörner, “Imaging the structure of the trimer systems 4He3 and
3He4He2,” Nat. Comm. 5, 5765 (2014).

[293] M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, L. P. H. Schmidt, M. Schöffler,
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