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The Yang monopole as a zero-dimensional topological defect has been well established in multiple fields
in physics. However, it remains an intriguing question to understand the interaction effects on Yang
monopoles. Here, we show that the collective motion of many interacting bosons gives rise to exotic
topological defects that are distinct from Yang monopoles seen by a single particle. Whereas interactions
may distribute Yang monopoles in the parameter space or glue them to a single giant one of multiple
charges, three-dimensional topological defects also arise from continuous manifolds of degenerate many-
body eigenstates. Their projections in lower dimensions lead to knotted nodal lines and nodal rings. Our
results suggest that ultracold bosonic atoms can be used to create emergent topological defects and directly
measure topological invariants that are not easy to access in solids.
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Yang monopoles play a crucial role in non-Abelian
gauge theories and have influential impacts in multiple
subareas of physics [1]. In high energy physics, they lay the
foundation of Yang-Mills theory and the standard model
[2–6]. In condensed matter physics, they give rise to
nontrivial topological quantum states characterized by
the second Chern number, C2 [7–9]. In a five-dimensional
)5 D) parameter space, a Yang monopole represents a zero-
dimensional point defect with a fourfold degeneracy. Away
from a Yang monopole, a spin-3=2 or pseudospin-3=2
could see such a point topological defect from either
local non-Abelian Berry curvatures or C2. When a four-
dimensional (4D) surface encloses the Yang monopole,
C2 ¼ 1. One could view a Yang monopole as a magnetic
monopole of “charge” 1.
Whereas Yang monopoles remained a theoretical con-

cept for decades, Sugawa et al. at the National Institute of
Standards and Technology (Gaithersburg, MD) (NIST)
delivered a Yang monopole for the first time in laboratories
by engineering the couplings among four hyperfine spin
states of ultracold bosonic atoms [10]. Each boson in this
experiment represents a pseudospin-3=2. While many
experiments have used bosons to probe local Abelian
Berry curvatures [11–13], C2 has been extracted in the
NIST experiment by integrating the non-Abelian Berry
curvature on 4D surfaces. Very recently, C2 has also been
measured in optical lattices and photonic crystals [14,15].
Though Yang monopoles have been well established in

noninteracting systems, a fundamental question remains.
Are topological defects seen by a collection of many
interacting spin-3=2 s the same as those seen by each
individual one? In this Letter, we show that the interactions
allow physicists to access completely different topological

defects arising from collective motions of many particles.
These emergent topological defects signify the vital impor-
tance of interactions on Yang monopoles, and they dem-
onstrate the power of ultracold atoms in creating and
detecting novel topological phenomena that are not easy
to access in solids.
Our main results are summarized as follows. For odd

particle numbers N, repulsive interactions distribute Yang
monopoles on a quantization axis in the parameter space,
and attractive interactions glue them to a single one of
“charge” N2 at the origin. In contrast, for N ¼ 4nþ 2,
where n is a non-negative integer, interactions produce
multiple three-dimensional (3D) topological defects. When
N ¼ 4n, the many-body ground state is unique for repul-
sive interactions, and no topological defect can be seen by
the ground state. The results of attractive interactions are
similar to those for N ¼ 4nþ 2. Here, 3D defects emerge
purely from interaction effects in bosons, unlike those
studied in noninteracting electronic systems [16–20]. We
also show how to use ultracold bosons to directly measure
the topological invariants in laboratories.
Our work was motivated by a recent paper by Ho and Li

[21]. Based on a mean field approach, this pioneering work
shows that a Yang monopole may be stretched into an
extended manifold due to interactions. In this mean field
approach, all pseudospin-3=2 s are described by the same
condensate wave function. Here, we provide an exact
solution for a generic N pseudospin-3=2 system. We show
that the many-body ground state becomes degenerate in
certain locations in the parameter space. These degenerate
many-body eigenstates give rise to novel topological
defects beyond mean field predictions.
Hamiltonian.—The single-particle Hamiltonian that

describes a Yang monopole reads [20,21]
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K̂ ¼ −Rzτz ⊗ n̂ · σ⃗ − Rxτx − Ryτy; ð1Þ

where σ⃗ and τ⃗ are two spin-1=2 operators, and n̂ is a unit
vector. A single-mode approximation has been taken for the
orbital part of the wave function; i.e., bosons share the same
spatial wave function. Equation (1), defined in a 5D
parameter space,R ¼ ðRx; Ry; Rznx; Rzny; RznzÞ, describes
a spin-3=2 particle. In theNISTexperiment, the first (second)
two parameters are determined by the intensities and phases
of radio-frequency (microwave) coupling and the last one,
Rznz, is adjusted by the detuning [10]. For convenience for
later discussions, we rewrite this Hamiltonian,

K̂ ¼
X4
i¼1

ϵiâ
†
i âi þ

X4
j¼2

Xj−1
i¼1

ðtijâ†i âj þ H:c:Þ; ð2Þ

which describes four lattice sites coupled by certain intersite
tunnelings tij, as shown in Fig. 1(a). â†i (âi) is the creation
(annihilation) operator at site i. ϵi is the on-site energy,
−ϵ1 ¼ ϵ2 ¼ ϵ3 ¼ −ϵ4 ¼ Rznz, t13 ¼ t24 ¼ −Rx þ iRy,
t12 ¼ −t34 ¼ −Rznx þ iRzny, and t14 ¼ t23 ¼ 0. The 5D
parameter space is now spanned by the complex tunnelings
t12 and t13, and Rznz that determine the on-site energies. As
this pseudospin-3=2 Hamiltonian respects time reversal

symmetry, every eigenstate is doubly degenerate, consistent
withKramers theorem. Formany-body systems,we consider
the Hamiltonian,

Ĥ ¼ K̂ þ Û; Û ¼ g
X4
i¼1

ðâ†i aiÞ2 ¼ g
X4
i¼1

n2i ; ð3Þ

where g is the on-site interaction strength. ni represents the
occupation in the ith lattice site and

P
4
i¼1 ni ¼ N is satisfied.

Because Û respects the time reversal symmetry, for odd N,
the Kramers theorem still applies. Though interspin inter-
actions exist in the NISTexperiment, here, we concretize the
discussions on intraspin interactions, which correspond to
on-site interactions in Eq. (3), to reveal fundamental inter-
action effects on Yang monopoles. A Yang monopole may
also be realized alternatively using coupled four lattice sites
described by Eq. (2) [22]. It is then natural to consider Ĥ in
Eq. (3) as on-site interactions dominate.
We solve Ĥ exactly and obtain the many-body eigen-

states jΨmi for N bosons. jΨmi is expanded using Fock
states, jΨmi ¼

P
fnigαmfnigjn1; n2; n3; n4i. When nodal

points are observed, we compute C2 [5,6,22],

C2¼
1

32π2

Z
S4
dRϵμνρλðTr½FμνFρλ�−Tr½Fμν�Tr½Fρλ�Þ; ð4Þ

where Fμν¼∂μAν−∂νAμþi½Aμ;Aν�, Amn
ν ¼−ihΨmj∂μjΨni.

Matrix Fμν and Aμ are the non-Abelian Berry curvature and
the non-Abelian Berry connection for the ground state
manifold, respectively. S4 is a closed 4D surface in the
parameter space, and ϵμνρλ is Levi-Civita symbol. When
nodal lines or rings are observed, corresponding topologi-
cal invariants are computed.
Away from the origin of the parameter space, the single-

particle ground state becomes twofold degenerate. Thus, for
N non-interacting bosons, there areN þ 1degenerate ground
states, and C2 reads NðN þ 1ÞðN þ 2Þ=6 [22]. Turning on
interactions, results become completely different.
N Yang monopoles.—When g > 0, there are N points on

the R5 axis, where the many-body ground state becomes
four-fold degenerate. At the origin, K̂ ¼ 0, there are four
ways to distribute N ∈ odd bosons in four equivalent
lattice sites to minimize the interaction energy, as shown
in Figs. 1(b)–1(c). Away from the origin, fourfold degen-
erate points also exist on the R5 axis. All tunnelings in
Eq. (2) vanish on this axis, as Ri≠5 ¼ 0. Many-body
eigenstates are simply Fock states. The mismatch of on-
site energies ϵ1 − ϵ2 ¼ ϵ4 − ϵ3 could exactly compensate
the penalty of interaction energy for moving one boson
from one lattice site to another. For example, for N ¼ 3 and
R5 ¼ g, states j1; 1; 0; 1i; j1; 0; 1; 1i; j2; 0; 0; 1i, and
j1; 0; 0; 2i become degenerate. For any N, the separation
between the two nearest points is given by ΔR5 ¼ g.

FIG. 1. Yang monopoles for oddN. Blue (red) spheres show the
positively (negatively) charged monopoles with charges denoted.
(a)–(c), g > 0, N ¼ 1, 3, 5. (d) g < 0, N ¼ 3. Insets illustrate
effective Hamiltonians near the origin. Orange solid lines (black
dots) represent single particle states (bosons). Dotted arrows
show effective couplings. (e)–(f) C2 as a function of the radius jkj
of the 5D sphere for three particles. Solid and dashed lines
(squares and circles) are analytical (numerical) results.
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Away from these fourfold degenerate points, the four
Fock states are no longer degenerate, and tunnelings
become finite. In the vicinity of each degenerate point,
we construct an effective model using the four nearly
degenerate states as the basis. Such an effective model has
exactly the same formula as the single-particle Hamiltonian
in Eq. (2), except that ϵi and tij are modified. We show, e.g.,
the effective Hamiltonian near the origin, in which the
parameters read

ϵ̃i ¼ ð−1ÞN−1
2 ϵi; t̃ij ¼

� tijðN þ 3Þ=4 for N ¼ 1; 5;…

t�ijðN þ 1Þ=4 for N ¼ 3; 7;…:

ð5Þ

Thus, we conclude that each fourfold degenerate point
corresponds to a Yang monopole. A subtle difference
between N ¼ 1; 5;… and N ¼ 3; 7;… exists. As shown
in Figs. 1(b)–1(c), it is a particle and a hole that tunnel in
the effective Hamiltonian for these two cases, respectively.
The “charge” of the Yang monopole at the origin for N ¼
1; 5;… is 1 and that for N ¼ 3; 7;… is −1. Similarly, for a
fixed N, with increasing distance from the origin, the
“charges” of monopoles alternate [22]. When all monop-
oles are enclosed, C2 ¼ 1.
A giant Yang monopole.—For attractive interactions,

only one monopole exists in the parameter space, and its
“charge” is N2. At the origin, jN; 0; 0; 0i, j0; N; 0; 0i,
j0; 0; N; 0i, j0; 0; 0; Ni are the four degenerate many-body
ground states, as all bosons prefer to occupy the same
lattice site to minimize the interaction energy. Away from
the origin, an effective model, which has the same formula
as Eq. (2), can be constructed. Since a single-particle
tunneling tij moves one boson from one lattice site to
another, it requires N steps of single-particle tunneling to
couple these states. The parameters in the effective
Hamiltonian read

ϵ̃0i ¼ Nϵi and t̃0ij ¼ cNtNij=g
N−1; ð6Þ

where cN is a function of N [22]. Using this effective
model, we obtain that the “charge” of the monopole is N2

[Fig. 1(d)]. The superposition of the four Fock states
actually forms a Schrödinger cat state [28–31]. Though
not stable for largeN, in a few-body system [32,33], a small
cat could exist in laboratories such that a Yang monopole of
“charge” N2 is observable.
C2 for any closed surface is equal to the total “charge” of

the monopoles it encloses. If a smooth deformation of the
surface does not touch a Yang monopole, C2 remains
unchanged. We numerically calculate C2 of three particles
on a 4D sphere as a function of the radius of the sphere.
Figures 1(e)–1(f) show that C2 is indeed given by the total
“charge” of the monopole enclosed in the sphere. Note that,
C2 is much smaller than that of noninteracting systems.

This is because an infinitesimal interaction reduces the
N þ 1 fold degeneracy of noninteracting systems to a
twofold one. Nevertheless, we have verified that, the total
C2 of the lowest N þ 1 bands for weakly interacting
systems is indeed the same as that for the corresponding
noninteracting systems.
3D topological defects.—If the average particle number

per site is an integer, i.e., N ¼ 4n, where n is a positive
integer, the many-body ground state becomes unique for
g > 0. This is best understood in the strongly interacting
regime. As bosons prefer to distribute evenly in the four
lattice sites to minimize the interaction energy, the unique
ground state cannot see any topological defects. When
g < 0, the many-body ground state is fourfold degenerate at
the origin of the parameter space, similar to the case of odd
particles. Away from the origin, an effective Hamiltonian
can be constructed in the same manner. However, the
resultant effective Hamiltonian is distinct. The effective
coupling between the Fock states, such as jN; 0; 0; 0i and
j0; N; 0; 0i, now requires an even number steps of single-
particle tunnelings. In the single-particle Hamiltonian in
Eq. (2), t12 and t34 have different signs. This minus sign
remains unchanged in the effective model for odd N, as
both effective couplings, t̃012 and t̃

0
34, are proportional to odd

powers of t12 and t34.
For even particle numbers, the minus sign disappears.

Completely different topological defects arise. The effec-
tive Hamiltonian reads

Ĥeff ¼ aτ̃z⊗ σ̃zþbτ̃x ⊗ Iþcτ̃y ⊗ IþdI⊗ σ̃xþeI⊗ σ̃y;

ð7Þ

where a ¼ −2R5, b ¼ −ðR2
1 − R2

2Þ=g, c ¼ −2R1R2=g,
d ¼ −ðR2

3 − R2
4Þ=g, and e ¼ −2R3R4=g for N ¼ 2. ⃗σ̃ and

⃗τ̃ are two spin-1=2 s, and I is the identity matrix. The
eigenstates of τ̃z ⊗ σ̃z, j↑↑i, j↑↓i, j↓↑i, j↓↓i, correspond
to jN; 0; 0; 0i, j0; N; 0; 0i, j0; 0; N; 0i, j0; 0; 0; Ni. The
eigenenergy of Ĥeff reads

E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ e2

p �
2

r
; ð8Þ

which shows that eigenstates become degenerate in certain
3D continuous manifolds.
fM1∶R1 ¼ R2 ¼ 0g and fM0

1∶R3 ¼ R4 ¼ 0g, both
the ground and excited states, are doubly degenerate.
fM2∶R5 ¼ 0; R2

1 þ R2
2 ¼ R2

3 þ R2
4g, the second and

third states are degenerate, and the ground state (the fourth
state) is unique.
As Kramers theorem does not apply to an even number

of spin-3=2 s, the evenfold degeneracy is not guaranteed,
andM2 is possible here. These three manifolds intersect at
the origin of the 5D parameter space. Away from them,
there is no degeneracy. M2 signifies the vanishing gap
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between the lowest and the highest two states on any closed
4D surface. Thus, C2 is no longer appropriate to character-
ize the topological defects. Each manifold is characterized
by its own corresponding topological invariant. Meanwhile,
the projections of them in lower dimensions lead to knotted
nodal lines and rings.
Since M1 and M2 are 3D defects in a 5D parameter

space, a one-dimensional (1D) loop can be defined without
intersecting them. We calculate the Berry phase γm ¼
−i

H
M dR · hΨmj∇RjΨmi for the mth eigenstate jΨmi,

where M denotes a closed loop in the parameter space.
For any loop that does not interlock the defects, i.e., a loop
that can shrink to a single point without closing the gap,
γm ¼ 0. For a loop interlocking the defects, γ1 þ γ2 ¼ 0 or
π (or their multiples). This defines a Z2 index ζ1 for the
defects [19]. For M1 and M0

1, we find that γ ¼ Nπ for all
eigenstates and ζ1 ¼ 0. ForM2, we find that γ ¼ ð0; π; π; 0Þ
for each eigenstate and ζ1 ¼ 1.
To better visualize this Z2 invariant, we projectM1,M1

0,
andM2 to lower dimensions, i.e., reducing the dimension by
fixing the values of certain parameters. Defining m⃗ ¼ ðd; eÞ
and jm⃗j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ e2

p
¼ ðR2

3 þ R2
4Þ=jgj, the eigenenergies in

Eq. (8) read E¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þc2

p
�jm⃗jÞ2

q
. Interestingly,

this energy spectrum is identical to the one used to study
nodal rings in electronic systems [19]. As shown in Fig. 2, for
any finite jm⃗j, M1 becomes an infinite nodal line, and M2

becomes a nodal ring with radius jm⃗j.M1
0 does not show up

in this subspace. The dashed circles that interlock the nodal
ring or line allowone to compute γ. Decreasing jm⃗j, the nodal
ring shrinks, and the nodal line remains unchanged. When
jm⃗j ¼ 0, the nodal ring reduces to a single point at the origin,
and the gap does not open. In particular, this whole 3D
subspace precisely becomesM1

0, and the eigenenergies are
twofold degenerate everywhere. For this particular set of
parameters, Ĥeff describes a quantum spin Hall effect, as

σz ¼ �1 corresponds to two opposite effective magnetic
fields acting on τ⃗. When m⃗ changes sign, the nodal ring
appears again.
On any two-dimensional (2D) sphere that does not touch

M2, the lowest two eigenstates are separated from the rest.
On such a sphere, the projection to the lowest k states,
which are separated from the higher l states, establishes
another topological invariant, ζ2, of the nodal ring [19,34].
To be explicit, Wilson lines connecting the north and south
pole along a half longitude depend on the polar angle ϕ, as
shown in Fig. (2). Such ϕ dependence allows one to
define a winding number nw. For generic k, l > 2, ζ2 ¼
mod ðnw; 2Þ defines a Z2 index. In our system, k ¼ 2, and
the winding number becomes a Z index [19,35]. For
our effective model Ĥeff , we find that ζ2 ¼ 1 for any 2D
sphere that encloses the nodal ring; otherwise, ζ2 ¼ 0.
Thus, the nodal ring defines a topological phase transition
where ζ2 changes its value. For repulsive interactions, M1

andM0
1 switch withM2 [22]. While the topological defects

are derived in the strongly interacting regime, we numeri-
cally verified that they hold even for weakly interacting
systems.
Realizations in few-body systems.—With increasing

N, the energy splitting between eigenstates decreases.
Moreover, due to the small scattering length as and the
extended orbital wave function in the NIST experiment, the
interaction strength g is very weak. For instance, for as ¼
5 nm,N ¼ 105, the trapping frequencyω ¼ 2π � 70 Hz, and
g ≈ 0.04 Hz, which is too weak to have significant effects.
The main experimental results are well explained by non-
interacting pictures. Thus, to better resolve these topological
defects and the associated topological invariants, experimen-
talists could use few-body systems to reduceN and increase g.
A 2D optical superlattice is a promising platform to

realize Hamiltonians in Eqs. (3) and (7) in the real space.
Such a superlattice divides the system into many isolated
plaquettes, each of which contains four sites. Currently
available experimental techniques allow experimentalists to
dress and detect each individual plaque. Many interesting
few-body phenomena have been explored [36–38]. Using
laser-assisted tunneling and a magnetic field gradient, both
the amplitude and phase of the tunnelings can be engi-
neered [37,39]. The on-site potential can be tuned by
superposing an additional 1D lattice tilted by 45°. The
Hamiltonian in Eq. (1) can then be delivered. Turning on
interactions, the effective Hamiltonian in Eq. (7) could then
be explored. For instance, the interaction strength is around
100 Hz for Rb in optical lattices with laser wavelength of
767 nm and depth of 8ER, where ER is the characteristic
energy scale defined by the wavelength. Increasing the
lattice depth or the scattering length, g can be further
enhanced. Using realistic experimental parameters, we find
that the previously discussed topological defects can indeed
be resolved [22]. Experimentalists can also realize Eq. (7)
directly in noninteracting systems by engineering the

FIG. 2. (a) The effective Hamiltonian for two particles with
g < 0. (b)–(c) shows the projections of the defects in a 3D
subspace with a fixed R3 and R4. (b) The red line (black ring)
shows the projection of M1 (M2). The green dotted circle (blue
2D sphere) is used to calculate ζ1 (ζ2). The dash-dotted longitude
line connecting the north and south poles defines a ϕ-dependent
Wilson line. (c) When M2 reduces to a point at the origin, M1

0
occupies the entire 3D subspace (red box).
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intersite couplings. A few other approaches, including
mesoscopic traps, optical tweezers, ion traps, and super-
conducting circuits, can also be used to study few-body
physics related to our work [22,32,33].
A unique advantage of ultracold atoms is that the topo-

logical defects and the associated topological invariants can
be directly probed. To measure ζ1, the local Berry curvature
could bemeasured to extract the Berry phase accumulated in
a 1D loop [10,11,40–44]. Tomeasure ζ2,Wilson lines can be
measured in the same manner in Ref. [45].
In the NIST experiment on spinor Bose-Einstein con-

densates, interspin interactions exist. Thus, we need to
consider generic interactions

P
igin

2
i þ

P
i<jgijninj, where

gi (gij) is the intraspin (interspin) interaction strength. If such
interactions preserve time reversal symmetry, our main
results remain unchanged. For interactions that break time
reversal symmetry, even richer physics regarding topological
defects arise [22].
In conclusion, we have shown that interactions give rise

to emergent topological defects distinct from those seen by
each individual particle. Depending on the total particle
number and the interaction strength, either giant Yang
monopoles of multiple charges or 3D continuous topologi-
cal defects emerge. Such topological defects can be
accessed in current experiments, in particular, those on
few-body systems. While Dirac monopoles control many
2D and 3D topological matters, Yang monopoles and C2

are crucial for topological quantum phenomena in high
dimensions, including 4D quantum Hall effects. Nodal
lines and nodal rings as continuous topological defects also
provide physicists unprecedented topological quantum
matter. We hope that our work will stimulate more studies
on using ultracold atoms to create and measure topological
defects in high dimensional interacting systems.
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